All Title Author
Keywords Abstract

PLOS ONE  2013 

Inherited Variants in Regulatory T Cell Genes and Outcome of Ovarian Cancer

DOI: 10.1371/journal.pone.0053903

Full-Text   Cite this paper   Add to My Lib

Abstract:

Although ovarian cancer is the most lethal of gynecologic malignancies, wide variation in outcome following conventional therapy continues to exist. The presence of tumor-infiltrating regulatory T cells (Tregs) has a role in outcome of this disease, and a growing body of data supports the existence of inherited prognostic factors. However, the role of inherited variants in genes encoding Treg-related immune molecules has not been fully explored. We analyzed expression quantitative trait loci (eQTL) and sequence-based tagging single nucleotide polymorphisms (tagSNPs) for 54 genes associated with Tregs in 3,662 invasive ovarian cancer cases. With adjustment for known prognostic factors, suggestive results were observed among rarer histological subtypes; poorer survival was associated with minor alleles at SNPs in RGS1 (clear cell, rs10921202, p = 2.7×10?5), LRRC32 and TNFRSF18/TNFRSF4 (mucinous, rs3781699, p = 4.5×10?4, and rs3753348, p = 9.0×10?4, respectively), and CD80 (endometrioid, rs13071247, p = 8.0×10?4). Fo0r the latter, correlative data support a CD80 rs13071247 genotype association with CD80 tumor RNA expression (p = 0.006). An additional eQTL SNP in CD80 was associated with shorter survival (rs7804190, p = 8.1×10?4) among all cases combined. As the products of these genes are known to affect induction, trafficking, or immunosuppressive function of Tregs, these results suggest the need for follow-up phenotypic studies.

References

[1]  Siegel R, Naishadham D, Jemal A (2012) Cancer statistics, 2012. CA Cancer J Clin 62: 10–29.
[2]  Hoskins WJ, Bundy BN, Thigpen JT, Omura GA (1992) The influence of cytoreductive surgery on recurrence-free interval and survival in small-volume stage III epithelial ovarian cancer: a Gynecologic Oncology Group study. Gynecol Oncol 47: 159–166.
[3]  McGuire V, Jesser CA, Whittemore AS (2002) Survival among U.S. women with invasive epithelial ovarian cancer. Gynecol Oncol 84: 399–403.
[4]  Bolton KL, Chenevix-Trench G, Goh C, Sadetzki S, Ramus SJ, et al. (2012) Association between BRCA1 and BRCA2 mutations and survival in women with invasive epithelial ovarian cancer. JAMA 307: 382–389.
[5]  Bolton KL, Tyrer J, Song H, Ramus SJ, Notaridou M, et al. (2010) Common variants at 19p13 are associated with susceptibility to ovarian cancer. Nat Genet 42: 880–884.
[6]  Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M, et al. (2003) Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med 348: 203–213.
[7]  Sato E, Olson SH, Ahn J, Bundy B, Nishikawa H, et al. (2005) Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci U S A 102: 18538–18543.
[8]  Knutson KL, Krco C, Goodman K, Kelemen LE, Low PS, et al. (2006) T cell immunity to the folate receptor alpha is prevalent in women with breast or ovarian cancer. J Clin Oncol 24: 4254–4261.
[9]  Preston CC, Goode EL, Hartmann LC, Kalli KR, Knutson KL (2011) Immunity and immune suppression in human ovarian cancer. Immunotherapy 3: 539–556.
[10]  Knutson KL, Disis ML, Salazar LG (2007) CD4 regulatory T cells in human cancer pathogenesis. Cancer Immunol Immunother 56: 271–285.
[11]  Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, et al. (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10: 942–949.
[12]  Wolf D, Wolf AM, Rumpold H, Fiegl H, Zeimet AG, et al. (2005) The expression of the regulatory T cell-specific forkhead box transcription factor FoxP3 is associated with poor prognosis in ovarian cancer. Clin Cancer Res 11: 8326–8331.
[13]  Maggi E, Cosmi L, Liotta F, Romagnani P, Romagnani S, et al. (2005) Thymic regulatory T cells. Autoimmun Rev 4: 579–586.
[14]  Zou W (2006) Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol 6: 295–307.
[15]  Roncarolo MG, Bacchetta R, Bordignon C, Narula S, Levings MK (2001) Type 1 T regulatory cells. Immunol Rev 182: 68–79.
[16]  Wahl SM, Swisher J, McCartney-Francis N, Chen W (2004) TGF-beta: the perpetrator of immune suppression by regulatory T cells and suicidal T cells. J Leukoc Biol 76: 15–24.
[17]  Moore KW, de Waal Malefyt R, Coffman RL, O'Garra A (2001) Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 19: 683–765.
[18]  Knutson KL (2006) Strong-arming immune regulation: Suppressing regulatory T cell function to treat cancers. Future Oncol 2: 379–389.
[19]  Fahlen L, Read S, Gorelik L, Hurst SD, Coffman RL, et al. (2005) T cells that cannot respond to TGF-beta escape control by CD4(+)CD25(+) regulatory T cells. J Exp Med 201: 737–746.
[20]  Yang ZZ, Novak AJ, Stenson MJ, Witzig TE, Ansell SM (2006) Intratumoral CD4+CD25+ regulatory T-cell-mediated suppression of infiltrating CD4+ T-cells in B-cell non-Hodgkin lymphoma. Blood 107: 3639–3646.
[21]  PubMed.gov website. Available: http://www.ncbi.nlm.nih.gov/pubmed. Accessed 2010 Feb 2.
[22]  Gamazon ER, Zhang W, Konkashbaev A, Duan S, Kistner EO, et al. (2010) SCAN: SNP and copy number annotation. Bioinformatics 26: 259–262.
[23]  The 1000 Genomes Project Consortium (2010) A map of human genome variation from population-scale sequencing. Nature 467: 1061–1073.
[24]  Program for Genomic Applications: Seattle SNPs. Available: http://pga.gs.washington.edu. Accessed 2010 Jun 4.
[25]  Sicotte H, Rider D, Poland G, Dhiman N, Kocher J-P (2011) SNPPicker: High quality tag SNP selection across multiple populations. BMC Bioinformatics 12: 129.
[26]  White KL, Schildkraut JM, Palmieri RT, Iversen ES Jr, Berchuck A, et al. (2012) Ovarian cancer risk associated with inherited inflammation-related variants. Cancer Res 72: 1064–1069.
[27]  Fridley BL, Jenkins GD, Tsai YY, Song H, Bolton KL, et al. (2012) Gene set analysis of survival following ovarian cancer implicates macrolide binding and intracellular signaling genes. Cancer Epidemiol Biomarkers Prev 21: 529–536.
[28]  University of Michigan: Center for Statistical Genetics. Available: www.sph.umich.edu/csg/abecasis/MACH/. Accessed 2012 Jan 6.
[29]  Skol AD, Scott LJ, Abecasis GR, Boehnke M (2006) Joint analysis is more efficient than replication-based analysis for two-stage genome-wide association studies. Nat Genet 38: 209–213.
[30]  Perez VL, Van Parijs L, Biuckians A, Zheng XX, Strom TB, et al. (1997) Induction of peripheral T cell tolerance in vivo requires CTLA-4 engagement. Immunity 6: 411–417.
[31]  Greenwald RJ, Boussiotis VA, Lorsbach RB, Abbas AK, Sharpe AH (2001) CTLA-4 regulates induction of anergy in vivo. Immunity 14: 145–155.
[32]  Chen L (2004) Co-inhibitory molecules of the B7-CD28 family in the control of T-cell immunity. Nat Rev Immunol 4: 336–347.
[33]  Grohmann U, Orabona C, Fallarino F, Vacca C, Calcinaro F, et al. (2002) CTLA-4-Ig regulates tryptophan catabolism in vivo. Nat Immunol 3: 1097–1101.
[34]  Tang Q, Adams JY, Tooley AJ, Bi M, Fife BT, et al. (2006) Visualizing regulatory T cell control of autoimmune responses in nonobese diabetic mice. Nat Immunol 7: 83–92.
[35]  Tadokoro CE, Shakhar G, Shen S, Ding Y, Lino AC, et al. (2006) Regulatory T cells inhibit stable contacts between CD4+ T cells and dendritic cells in vivo. J Exp Med 203: 505–511.
[36]  Ross EM, Wilkie TM (2000) GTPase-activating proteins for heterotrimeric G proteins: regulators of G protein signaling (RGS) and RGS-like proteins. Annu Rev Biochem 69: 795–827.
[37]  Hollinger S, Hepler JR (2002) Cellular regulation of RGS proteins: modulators and integrators of G protein signaling. Pharmacol Rev 54: 527–559.
[38]  Agenes F, Bosco N, Mascarell L, Fritah S, Ceredig R (2005) Differential expression of regulator of G-protein signalling transcripts and in vivo migration of CD4+ naive and regulatory T cells. Immunology 115: 179–188.
[39]  Birzele F, Fauti T, Stahl H, Lenter MC, Simon E, et al. (2011) Next-generation insights into regulatory T cells: expression profiling and FoxP3 occupancy in Human. Nucleic Acids Res 39: 7946–7960.
[40]  (IMSGC) IMSGC (2010) IL12A, MPHOSPH9/CDK2AP1 and RGS1 are novel multiple sclerosis susceptibility loci. Genes Immun 11: 397–405.
[41]  Smyth DJ, Plagnol V, Walker NM, Cooper JD, Downes K, et al. (2008) Shared and distinct genetic variants in type 1 diabetes and celiac disease. N Engl J Med 359: 2767–2777.
[42]  Johnson BA, Wang J, Taylor EM, Caillier SJ, Herbert J, et al. (2010) Multiple sclerosis susceptibility alleles in African Americans. Genes Immun 11: 343–350.
[43]  Hunt KA, Zhernakova A, Turner G, Heap GAR, Franke L, et al. (2008) Newly identified genetic risk variants for celiac disease related to the immune response. Nat Genet 40: 395–402.
[44]  Wang R, Kozhaya L, Mercer F, Khaitan A, Fujii H, et al. (2009) Expression of GARP selectively identifies activated human FOXP3+ regulatory T cells. Proc Natl Acad Sci U S A 106: 13439–13444.
[45]  Probst-Kepper M, Balling R, Buer J (2010) FOXP3: required but not sufficient. the role of GARP (LRRC32) as a safeguard of the regulatory phenotype. Curr Mol Med 10: 533–539.
[46]  Stockis J, Colau D, Coulie PG, Lucas S (2009) Membrane protein GARP is a receptor for latent TGF-β on the surface of activated human Treg. Eur J Immunol 39: 3315–3322.
[47]  Tran DQ, Glass DD, Uzel G, Darnell DA, Spalding C, et al. (2009) Analysis of Adhesion Molecules, Target Cells, and Role of IL-2 in Human FOXP3+ Regulatory T Cell Suppressor Function. J Immunol 182: 2929–2938.
[48]  Andersson J, Tran DQ, Pesu M, Davidson TS, Ramsey H, et al. (2008) CD4+ FoxP3+ regulatory T cells confer infectious tolerance in a TGF-beta-dependent manner. J Exp Med 205: 1975–1981.
[49]  Ronchetti S, Zollo O, Bruscoli S, Agostini M, Bianchini R, et al. (2004) GITR, a member of the TNF receptor superfamily, is costimulatory to mouse T lymphocyte subpopulations. Eur J Immunol 34: 613–622.
[50]  Nocentini G, Riccardi C (2005) GITR: a multifaceted regulator of immunity belonging to the tumor necrosis factor receptor superfamily. Eur J Immunol 35: 1016–1022.
[51]  Shimizu J, Yamazaki S, Takahashi T, Ishida Y, Sakaguchi S (2002) Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol 3: 135–142.
[52]  McHugh RS, Whitters MJ, Piccirillo CA, Young DA, Shevach EM, et al. (2002) CD4(+)CD25(+) immunoregulatory T cells: gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. Immunity 16: 311–323.
[53]  Kitamura N, Murata S, Ueki T, Mekata E, Reilly RT, et al. (2009) OX40 costimulation can abrogate Foxp3+ regulatory T cell-mediated suppression of antitumor immunity. Int J Cancer 125: 630–638.
[54]  Vu MD, Xiao X, Gao W, Degauque N, Chen M, et al. (2007) OX40 costimulation turns off Foxp3+ Tregs. Blood 110: 2501–2510.
[55]  Lu L-F, Thai T-H, Calado DP, Chaudhry A, Kubo M, et al. (2009) Foxp3-dependent microRNA155 confers competitive fitness to regulatory T cells by targeting SOCS1 protein. Immunity 30: 80–91.
[56]  Karst AM, Drapkin R (2010) Ovarian cancer pathogenesis: a model in evolution. J Oncol 2010: 932371.

Full-Text

comments powered by Disqus