All Title Author
Keywords Abstract

PLOS ONE  2013 

Mesodermal Gene Expression in the Acoel Isodiametra pulchra Indicates a Low Number of Mesodermal Cell Types and the Endomesodermal Origin of the Gonads

DOI: 10.1371/journal.pone.0055499

Full-Text   Cite this paper   Add to My Lib

Abstract:

Acoelomorphs are bilaterally symmetric small marine worms that lack a coelom and possess a digestive system with a single opening. Two alternative phylogenetic positions of this group within the animal tree are currently debated. In one view, Acoelomorpha is the sister group to all remaining Bilateria and as such, is a morphologically simple stepping stone in bilaterian evolution. In the other, the group is a lineage within the Deuterostomia, and therefore, has derived a simple morphology from a more complex ancestor. Acoels and the closely related Nemertodermatida and Xenoturbellida, which together form the Acoelomorpha, possess a very limited number of cell types. To further investigate the diversity and origin of mesodermal cell types we describe the expression pattern of 12 orthologs of bilaterian mesodermal markers including Six1/2, Twist, FoxC, GATA4/5/6, in the acoel Isodiametra pulchra. All the genes are expressed in stem cells (neoblasts), gonads, and at least subsets of the acoel musculature. Most are expressed in endomesodermal compartments of I. pulchra developing embryos similar to what has been described in cnidarians. Our molecular evidence indicates a very limited number of mesodermal cell types and suggests an endomesodermal origin of the gonads and the stem cell system. We discuss our results in light of the two prevailing phylogenetic positions of Acoelomorpha.

References

[1]  Burton PM (2008) Insights from diploblasts; the evolution of mesoderm and muscles. J Exp Zool (Mol Dev Evol) 310B: 5–14.
[2]  Martindale MQ, Pang K, Finnerty JR (2004) Investigating the origins of triploblasty: `mesodermal' gene expression in a diploblastic animal, the sea anemone Nematostella vectensis (Phylum, Cnidaria; Class, Anthozoa). Development 131: 2463–2474.
[3]  Remane A (1950) Die Entstehung der Metamerie der Wirbellosen. Verh Dt Zool Ges: 16–23.
[4]  Salvini-Plawen L (1978) On the origin and evolution of the lower Metazoa. J Zool Syst Evol 16.
[5]  Technau U, Scholz CB (2003) Origin and evolution of endoderm and mesoderm. Int J Dev Biol 47: 531–539.
[6]  Ruppert EE (1991) Introduction to the aschelminth phyla: a consideration of mesoderm, body cavities, and cuticle. In: Harrison FW, Ruppert EE, editors. Microscopic Anatomy of Invertebrates Vol. Aschelminthes. New York: Wiley-Liss. 1–17.
[7]  Ruppert EE, Fox RS, Barnes RD (2004) Invertebrate Zoology. Belmont, CA: Brooks/Cole-Thomson Learning.
[8]  Schmidt-Rhaesa A (2007) The Evolution of Organ Systems. Oxford: Oxford University Press.
[9]  Clark RB (1964) Dynamics in metazoan evolution. Oxford: Clarendon Press.
[10]  Rieger RM, Ladurner P (2003) The significance of muscle cells for the origin of mesoderm in Bilateria. Integr Comp Biol 43: 47–54.
[11]  Salvini-Plawen L, Splechtna H (1979) Zur Homologie der Keimbl?tter. Z Zool Syst Evol-forsch 17: 10–30.
[12]  Remane A (1963) The enterocoelic origin of the coelom. In: Dougherty E, editor. The lower Metazoa. Berkeley: University California Press. 78–90.
[13]  Rieger R (1985) The phylogenetic status of the acoelomate organization within the Bilateria: a histological perspective. In: Conway Morris S, George JD, Gibson R, Platt HM, editors. The Origins and Relationships of lower Invertebrates. Oxford: Oxford University Press. 101–122.
[14]  Arendt D (2008) The evolution of cell types in animals: emerging principles from molecular studies. Nat Rev Genet 9: 868–882.
[15]  Rieger RM, Lombardi J (1987) Ultrastructure of coelomic lining in echinoderm podia: significance for concepts in the evolution of muscle and peritoneal cells. Zoomorphology 107: 191–208.
[16]  Hyman LH (1951) Platyhelminthes and Rhynchocoela. The Acoelomate Bilatera. New York: McGraw-Hill.
[17]  von Graff LV (1891) Die Organisation der Turbellaria Acoela. Leipzig: Verlag Von Wilhelm Engelmann.
[18]  Ladurner P, Rieger RM (2000) Embryonic muscle development of Convoluta pulchra (Turbellaria-Acoelomorpha, platyhelminthes). Dev Biol 222: 359–375.
[19]  Hejnol A, Martindale MQ (2008) Acoel development supports a simple planula-like urbilaterian. Philos Trans R Soc Lond B Biol Sci 363: 1493–1501.
[20]  Egger B, Steinke D, Tarui H, De Mulder K, Arendt D, et al. (2009) To be or not to be a flatworm: the acoel controversy. PLoS ONE 4: e5502.
[21]  Hejnol A, Obst M, Stamatakis A, Ott M, Rouse GW, et al. (2009) Assessing the root of bilaterian animals with scalable phylogenomic methods. Philos Trans R Soc Lond B Biol Sci 276: 4261–4270.
[22]  Philippe H, Brinkmann H, Copley RR, Moroz LL, Nakano H, et al. (2011) Acoelomorph flatworms are deuterostomes related to Xenoturbella. Nature 470: 255–258.
[23]  Tyler S (2001) The early worm: origins and relationships of the lower flatworms. In: Littlewood DTJ, Bray RA, editors. Interrelationships of the Platyhelminthes. London: Taylor & Francis. 3–12.
[24]  Edgecombe G, Giribet G, Dunn C, Hejnol A, Kristensen R, et al. (2011) Higher-level metazoan relationships: recent progress and remaining questions. Org Diver Evol 11: 151–172.
[25]  Tyler S, Rieger RM (1999) Functional morphology of musculature in the acoelomate worm Convoluta pulchra (Plathelminthes). Zoomorphology 119: 127–142.
[26]  Henry JQ, Martindale MQ, Boyer BC (2000) The unique developmental program of the acoel flatworm, Neochildia fusca. Dev Biol 220: 285–295.
[27]  Rieger RM, Tyler S, Smith III JPS, Rieger GE (1991) Platyhelminthes: Turbellaria. In: Harrison FW, Bogitsh BJ, editors. Microscopic Anatomy of Invertebrates. Vol. Platyhelminthes and Nemertinea. New York: Wiley-Liss. 7–140.
[28]  De Mulder K, Kuales G, Pfister D, Willems M, Egger B, et al. (2009) Characterization of the stem cell system of the acoel Isodiametra pulchra. BMC Dev Biol 9: 69.
[29]  Boone M, Willems M, Claeys M, Artois T (2010) Spermatogenesis and the structure of the testes in Isodiametra pulchra (Isodiametridae, Acoela). Acta Zool 92: 101–108.
[30]  Jondelius U, Wallberg A, Hooge M, Raikova OI (2011) How the worm got its pharynx: phylogeny, classification and bayesian assessment of character evolution in Acoela. Syst Biol 60: 845–871.
[31]  Hooge MD, Tyler S (2005) New tools for resolving phylogenies: a systematic revision of the Convolutidae (Acoelomorpha, Acoela). J Zool Syst Evol Res 43: 100–113.
[32]  Genikhovich G, Technau U (2011) Complex functions of Mef2 splice variants in the differentiation of endoderm and of a neuronal cell type in a sea anemone. Development 138: 4911–4919.
[33]  Potthoff MJ, Olson EN (2007) MEF2: a central regulator of diverse developmental programs. Development 134: 4131–4140.
[34]  Arendt D, Tessmar K, de Campos-Baptista M-IM, Dorresteijn A, Wittbrodt J (2002) Development of pigment-cup eyes in the polychaete Platynereis dumerilii and evolutionary conservation of larval eyes in Bilateria. Development 129: 1143–1154.
[35]  Cheyette BNR, Green PJ, Martin K, Garren H, Hartenstein V, et al. (1994) The Drosophila sine oculis locus encodes a homeodomain-containing protein required for the development of the entire visual system. Neuron 12: 977–996.
[36]  Stierwald M, Yanze N, Bamert RP, Kammermeier L, Schmid V (2004) The Sine oculis/Six class family of homeobox genes in jellyfish with and without eyes: development and eye regeneration. Dev Biol 274: 70–81.
[37]  Ciglar L, Furlong EEM (2009) Conservation and divergence in developmental networks: a view from Drosophila myogenesis. Curr Opin Cell Biol 21: 754–760.
[38]  Boorman CJ, Shimeld SM (2002) Pitx homeobox genes in Ciona and amphioxus show left–right asymmetry is a conserved chordate character and define the ascidian adenohypophysis. Evol Dev 4: 354–365.
[39]  Duboc V, R?ttinger E, Lapraz F, Besnardeau L, Lepage T (2005) Left-right asymmetry in the sea urchin embryo is regulated by Nodal signaling on the right side. Dev Cell 9: 147–158.
[40]  Yasui K, Zhang S, Uemura M, Saiga H (2000) Left-right asymmetric expression of BbPtx, a Ptx-related gene, in a lancelet species and the developmental left-sidedness in deuterostomes. Development 127: 187–195.
[41]  Arenas-Mena C (2008) The transcription factors HeBlimp and HeT-brain of an indirectly developing polychaete suggest ancestral endodermal, gastrulation, and sensory cell-type specification roles. J Exp Zool (Mol Dev Evol) 310B: 567–576.
[42]  Croce J, Lhomond G, Lozano J-C, Gache C (2001) ske-T, a T-box gene expressed in the skeletogenic mesenchyme lineage of the sea urchin embryo. Mech Dev 107: 159–162.
[43]  Horton AC, Gibson-Brown JJ (2002) Evolution of developmental functions by the Eomesodermin, T-brain-1, Tbx21 subfamily of T-box genes: insights from amphioxus. J Exp Zool 294: 112–121.
[44]  Satoh G, Takeuchi JK, Yasui K, Tagawa K, Saiga H, et al. (2002) Amphi-Eomes/Tbr1: an amphioxus cognate of vertebrate Eomesodermin and T-Brain1 genes whose expression reveals evolutionarily distinct domain in amphioxus development. J Exp Zool (Mol Dev Evol) 294B: 136–145.
[45]  Tagawa K, Humphreys T, Satoh N (2000) T-brain expression in the apical organ of hemichordate tornaria larvae suggests its evolutionary link to the vertebrate forebrain. J Exp Zool 288: 23–31.
[46]  de-Leon SB-T, Davidson EH (2010) Information processing at the foxa node of the sea urchin endomesoderm specification network. Proc Natl Acad Sci USA 107: 10103–10108.
[47]  Hejnol A, Martindale MQ (2008) Acoel development indicates the independent evolution of the bilaterian mouth and anus. Nature 456: 382–386.
[48]  Azzaria M, Goszczynski B, Chung MA, Kalb JM, McGhee JD (1996) A fork head/HNF-3 homolog expressed in the pharynx and intestine of the Caenorhabditis elegans embryo. Dev Biol 178: 289–303.
[49]  Koinuma S, Umesono Y, Watanabe K, Agata K (2000) Planaria FoxA (HNF3) homologue is specifically expressed in the pharynx-forming cells. Gene 259: 171–176.
[50]  Martín-Durán JM, Amaya E, Romero R (2010) Germ layer specification and axial patterning in the embryonic development of the freshwater planarian Schmidtea polychroa. Dev Biol 340: 145–158.
[51]  Chiodin M, Achatz JG, Wanninger A, Martinez P (2011) Molecular architecture of muscles in an acoel and its evolutionary implications. J Exp Zool (Mol Dev Evol) 316B: 427–439.
[52]  Kong Y, Flick MJ, Kudla AJ, Konieczny SF (1997) Muscle LIM protein promotes myogenesis by enhancing the activity of MyoD. Mol Cell Biol 17: 4750–4760.
[53]  Arber S, Halder G, Caroni P (1994) Muscle LIM protein, a novel essential regulator of myogenesis, promotes myogenic differentiation. Cell 79: 221–231.
[54]  Stronach BE, Renfranz PJ, Lilly B, Beckerle MC (1999) Muscle LIM proteins are associated with muscle sarcomeres and require dMEF2 for their expression during Drosophila myogenesis. Mol Biol Cell 10: 2329–2342.
[55]  Steinmetz PRH, Kraus JEM, Larroux C, Hammel JU, Amon-Hassenzahl A, et al. (2012) Independent evolution of striated muscles in cnidarians and bilaterians. Nature 487: 231–234.
[56]  Smith JI, Bush L (1991) Convoluta pulchra n. sp. (Turbellaria: Acoela) from the east coast of north America. Trans Am Microsc Soc 110: 12–26.
[57]  Hooge MD (2001) Evolution of body-wall musculature in the platyhelminthes (Acoelomorpha, Catenulida, Rhabditophora). J Morphol 249: 171–194.
[58]  Hooge MD, Haye P, Tyler S, Litvaitis MK, Kornfield I (2002) Molecular systematics of the Acoela (Acoelomorpha, Platyhelminthes) and its concordance with morphology. Mol Phylogenet Evol 24: 333–342.
[59]  Semmler H, Bailly X, Wanninger A (2008) Myogenesis in the basal bilaterian Symsagittifera roscoffensis (Acoela). Front Zool 5: 14.
[60]  Gschwentner R, Ladurner P, Nimeth K, Rieger R (2001) Stem cells in a basal bilaterian. Cell Tissue Res 304: 401–408.
[61]  Gardiner EG (1895) Early development of Polychoerus caudatus, MARK. J Morphol 11: 155–176.
[62]  Bresslau E (1909) Die Entwicklung der Acoelen. Verh Dtsch Zool Ges 19: 314–324.
[63]  Smith JPSI, Tyler S (1985) The acoel turbellarians: kingpins of metazoan evolution or a specialized offshoot? In: Conway Morris S, George JD, Gibson R, Platt HM, editors. The origins and relationships of lower invertebrates. Oxford: Oxford University Press. 123–142.
[64]  Boone M, Bert W, Claeys M, Houthoofd W, Artois T (2011) Spermatogenesis and the structure of the testes in Nemertodermatida. Zoomorphology 130: 273–282.
[65]  Obst M, Nakano H, Bourlat SJ, Thorndyke MC, Telford MJ, et al. (2011) Spermatozoon ultrastructure of Xenoturbella bocki (Westblad 1949). Acta Zool 92: 109–115.
[66]  Moreno E, De Mulder K, Salvenmoser W, Ladurner P, Martínez P (2010) Inferring the ancestral function of the posterior Hox gene within the Bilateria: controlling the maintenance of reproductive structures, the musculature and the nervous system in the acoel flatworm Isodiametra pulchra. Evol Dev 12: 258–266.
[67]  Baylies MK, Bate M (1996) twist: a myogenic switch in Drosophila. Science 272: 1481–1484.
[68]  Spicer DB, Rhee J, Cheung WL, Lassar AB (1996) Inhibition of myogenic bHLH and MEF2 transcription factors by the bHLH protein Twist. Science 272: 1476–1480.
[69]  Extavour CG, Akam M (2003) Mechanisms of germ cell specification across the metazoans: epigenesis and preformation. Development 130: 5869–5884.
[70]  Reddien PW, Oviedo NJ, Jennings JR, Jenkin JC, Sanchez Alvarado A (2005) SMEDWI-2 is a PIWI-like protein that regulates planarian stem cells. Science 310: 1327–1330.
[71]  Seipel K, Yanze N, Schmid V (2004) The germ line and somatic cell gene Cniwi in the jellyfish Podocryne carnea. Int J Dev Biol 48: 1–7.
[72]  De Mulder K, Pfister D, Kuales G, Egger B, Salvenmoser W, et al. (2009) Stem cells are differentially regulated during development, regeneration and homeostasis in flatworms. Dev Biol 334: 198–212.
[73]  Eisenhoffer GT, Kang H, Sanchez Alvarado A (2008) Molecular analysis of stem cells and their descendants during cell turnover and regeneration in the planarian Schmidtea mediterranea. Cell Stem Cell 3: 327–339.
[74]  Pfister D, De Mulder K, Philipp I, Kuales G, Hrouda M, et al. (2007) The exceptional stem cell system of Macrostomum lignano: screening for gene expression and studying cell proliferation by hydroxyurea treatment and irradiation. Front Zool 4: 9.
[75]  Rossi L, Salvetti A, Marincola F, Lena A, Deri P, et al. (2007) Deciphering the molecular machinery of stem cells: a look at the neoblast gene expression profile. Genome Biol 8: R62.
[76]  Wang Y, Stary JM, Wilhelm JE, Newmark PA (2010) A functional genomic screen in planarians identifies novel regulators of germ cell development. Genes Dev 24: 2081–2092.
[77]  Wagner DE, Ho JJ, Reddien PW (2012) Genetic regulators of a pluripotent adult stem cell system in planarians identified by RNAi and clonal analysis. Cell Stem Cell 10: 299–311.
[78]  Seydoux G, Braun RE (2006) Pathway to totipotency: lessons from germ cells. Cell 127: 891–904.
[79]  Shimeld SM, Boyle MJ, Brunet T, Luke GN, Seaver EC (2010) Clustered Fox genes in lophotrochozoans and the evolution of the bilaterian Fox gene cluster. Dev Biol 340: 234–248.
[80]  Tu Q, Brown CT, Davidson EH, Oliveri P (2006) Sea urchin Forkhead gene family: phylogeny and embryonic expression. Dev Biol 300: 49–62.
[81]  Wotton KR, Mazet F, Shimeld SM (2008) Expression of FoxC, FoxF, FoxL1, and FoxQ1 genes in the dogfish Scyliorhinus canicula defines ancient and derived roles for fox genes in vertebrate development. Dev Dyn 237: 1590–1603.
[82]  Mazet F, Amemiya CT, Shimeld SM (2006) An ancient Fox gene cluster in bilaterian animals. Curr Biol 16: R314–R316.
[83]  Boyle M, Seaver E (2010) Expression of FoxA and GATA transcription factors correlates with regionalized gut development in two lophotrochozoan marine worms: Chaetopterus (Annelida) and Themiste lageniformis (Sipuncula). EvoDevo 1: 2.
[84]  Boyle MJ, Seaver EC (2008) Developmental expression of foxA and gata genes during gut formation in the polychaete annelid, Capitella sp. I. Evol Dev 10: 89–105.
[85]  Harada Y, Akasaka K, Shimada H, Peterson KJ, Davidson EH, et al. (1996) Spatial expression of a forkhead homologue in the sea urchin embryo. Mech Dev 60: 163–173.
[86]  Magie C, Pang K, Martindale M (2005) Genomic inventory and expression of Sox and Fox genes in the cnidarian Nematostella vectensis. Dev Genes Evol 215: 618–630.
[87]  Haszprunar G (1996) Plathelminthes and Plathelminthomorpha - paraphyletic taxa. J Zool Syst Evol Res 34: 41–48.
[88]  Rieger RM, Purschke G, Bartolomaeus T, Purschke G (2005) The coelom and the origin of the annelid body plan. In: Bartolomeus T, Purschke G, editors. Morphology, molecules, evolution and phylogeny in Polychaeta and related taxa: Springer Netherlands. 127–137.
[89]  Dolmatov I, Mashanov V, Zueva O (2007) Derivation of muscles of the Aristotle’s lantern from coelomic epithelia. Cell Tissue Res 327: 371–384.
[90]  Lee PY, Nam J, Davidson EH (2007) Exclusive developmental functions of gatae cis-regulatory modules in the Strongylocentrorus purpuratus embryo. Dev Biol 307: 434–445.
[91]  Yankura K, Martik M, Jennings C, Hinman VF (2010) Uncoupling of complex regulatory patterning during evolution of larval development in echinoderms. BMC Biol 8: 143.
[92]  Hinman VF, Nguyen AT, Cameron RA, Davidson EH (2003) Developmental gene regulatory network architecture across 500 million years of echinoderm evolution. Proc Natl Acad Sci USA 100: 13356–13361.
[93]  Kozmik Z, Holland ND, Kreslova J, Oliveri D, Schubert M, et al. (2007) Pax-Six-Eya-Dach network during amphioxus development: conservation in vitro but context specificity in vivo. Dev Biol 306: 143–159.
[94]  Yasui K, Zhang S-c, Uemura M, Aizawa S, Ueki T (1998) Expression of a twist-related gene, Bbtwist, during the development of a lancelet species and its relation to cephalochordate anterior structures. Dev Biol 195: 49–59.
[95]  Zhang Y, Wang L, Shao M, Zhang H (2007) Characterization and developmental expression of AmphiMef2 gene in amphioxus. (Abstract). Science in China Series C: Life Sciences 50: 637–641.
[96]  Nielsen C (2012) Animal evolution. Oxford: Oxford University Press.
[97]  Stach T (2002) Minireview: on the homology of the protocoel in Cephalochordata and ‘lower’ Deuterostomia. Acta Zoologica 83: 25–31.
[98]  Gilbert SF, Raunio AM (1997) Embryology: constructing the organism. Sunderland: Sinauer Associates.
[99]  Storch V, Higgins RP, Morse P (1989) Internal anatomy of Meiopriapulus fijiensis (Priapulids). Trans Am Microsc Soc 108: 245–261.
[100]  Worsaae K, Sterrer W, Kaul-Strehlow S, Hay-Schmidt A, Giribet G (2012) An anatomical description of a miniaturized acorn worm (Hemichordata, Enteropneusta) with asexual reproduction by paratomy. PLoS ONE 7: e48529.
[101]  Fransen ME (1980) Ultrastructure of coelomic organization in annelids I. archiannelids and other small polychaetes. Zoomorphologie 95: 235–249.
[102]  Smith PR, Lombardi J, Rieger R (1986) Ultrastructure of the body cavity lining in a secondary acoelomate, Microphthalamus cf. listens westheide (Polychaeta: Hesionidae). J Morphol 188: 257–271.
[103]  Schuchert P, Rieger RM (1990) Ultrastructural observations on the dwarf male of Bonellia viridis (Echiura). Acta Zool 71: 5–16.
[104]  Seipel K, Schmid V (2005) Evolution of striated muscle: jellyfish and the origin of triploblasty. Dev Biol 282: 14–26.
[105]  Seipel K, Volker S (2006) Mesodermal anatomies in cnidarian polyps and medusae. Int J Dev Biol 50: 589–599.
[106]  Martindale MQ, Henry JQ (1999) Intracellular fate mapping in a basal metazoan, the ctenophore Mnemiopsis leidyi, reveals the origins of mesoderm and the existence of indeterminate cell lineages. Dev Biol 214: 243–257.
[107]  Boyer BC, Henry JQ, Martindale MQ (1996) Dual origins of mesoderm in a basal spiralian: cell lineage analyses in the polyclad turbellarian Hoploplana inquilina. Dev Biol 179: 329–338.
[108]  Cannon HG (1925) Ectodermal muscles in a crustacean (abstract). Nature 115: 458–459.
[109]  Fritzenwanker JH, Saina M, Technau U (2004) Analysis of forkhead and snail expression reveals epithelial-mesenchymal transitions during embryonic and larval development of Nematostella vectensis. Dev Biol 275: 389–402.
[110]  Renfer E, Amon-Hassenzahl A, Steinmetz PRH, Technau U (2010) A muscle-specific transgenic reporter line of the sea anemone, Nematostella vectensis. Proc Natl Acad Sci USA 107: 104–108.
[111]  Scholz C, Technau U (2003) The ancestral role of Brachyury expression NemBra1 in the basal cnidarian Nematostella vectensis. Dev Genes Evol 212: 563–570.
[112]  Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, et al. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61: 539–542.
[113]  Ax P (1996) Multicellular animals: a new approach to the phylogenetic order in nature. Berlin: Springer.

Full-Text

comments powered by Disqus