Primary open angle glaucoma (POAG) is a leading cause of blindness worldwide. The molecular signaling involved in the pathogenesis of POAG remains unknown. Here, we report that mice lacking the α1 subunit of the nitric oxide receptor soluble guanylate cyclase represent a novel and translatable animal model of POAG, characterized by thinning of the retinal nerve fiber layer and loss of optic nerve axons in the context of an open iridocorneal angle. The optic neuropathy associated with soluble guanylate cyclase α1–deficiency was accompanied by modestly increased intraocular pressure and retinal vascular dysfunction. Moreover, data from a candidate gene association study suggests that a variant in the locus containing the genes encoding for the α1 and β1 subunits of soluble guanylate cyclase is associated with POAG in patients presenting with initial paracentral vision loss, a disease subtype thought to be associated with vascular dysregulation. These findings provide new insights into the pathogenesis and genetics of POAG and suggest new therapeutic strategies for POAG.
Quigley HA (2011) Glaucoma. Lancet 377: 1367–1377.
[3]
Vajaranant TS, Pasquale LR (2012) Estrogen deficiency accelerates aging of the optic nerve. Menopause 19: 942–947.
[4]
Flammer J, Orgul S, Costa VP, Orzalesi N, Krieglstein GK, et al. (2002) The impact of ocular blood flow in glaucoma. Prog Retin Eye Res 21: 359–393.
[5]
Kass MA, Gordon MO, Gao F, Heuer DK, Higginbotham EJ, et al. (2010) Delaying Treatment of Ocular Hypertension: The Ocular Hypertension Treatment Study. Arch Ophthalmol 128: 276–287.
[6]
Leske MC, Connell AM, Wu SY, Nemesure B, Li X, et al. (2001) Incidence of open-angle glaucoma: the Barbados Eye Studies. The Barbados Eye Studies Group. Arch Ophthalmol 119: 89–95.
[7]
Henry E, Newby DE, Webb DJ, O'Brien C (1999) Peripheral endothelial dysfunction in normal pressure glaucoma. Invest Ophthalmol Vis Sci 40: 1710–1714.
[8]
Su WW, Cheng ST, Ho WJ, Tsay PK, Wu SC, et al.. (2008) Glaucoma is associated with peripheral vascular endothelial dysfunction. Ophthalmology 115: 1173–1178 e1171.
[9]
Feke GT, Pasquale LR (2008) Retinal blood flow response to posture change in glaucoma patients compared with healthy subjects. Ophthalmology 115: 246–252.
[10]
Park SC, De Moraes CG, Teng CC, Tello C, Liebmann JM, et al. (2011) Initial parafoveal versus peripheral scotomas in glaucoma: risk factors and visual field characteristics. Ophthalmology 118: 1782–1789.
[11]
Leske MC (2009) Ocular perfusion pressure and glaucoma: clinical trial and epidemiologic findings. Curr Opin Ophthalmol 20: 73–78.
[12]
Cherecheanu AP, Garhofer G, Schmidl D, Werkmeister R, Schmetterer L (2013) Ocular perfusion pressure and ocular blood flow in glaucoma. Curr Opin Pharmacol 13: 36–42.
[13]
Nathanson JA, McKee M (1995) Identification of an extensive system of nitric oxide-producing cells in the ciliary muscle and outflow pathway of the human eye. Invest Ophthalmol Vis Sci 36: 1765–1773.
[14]
Fernandez-Durango R, Fernandez-Martinez A, Garcia-Feijoo J, Castillo A, de la Casa JM, et al. (2008) Expression of nitrotyrosine and oxidative consequences in the trabecular meshwork of patients with primary open-angle glaucoma. Invest Ophthalmol Vis Sci 49: 2506–2511.
[15]
Neufeld AH, Hernandez MR, Gonzalez M (1997) Nitric oxide synthase in the human glaucomatous optic nerve head. Arch Ophthalmol 115: 497–503.
[16]
Nimmegeers S, Sips P, Buys E, Brouckaert P, Van de Voorde J (2007) Functional role of the soluble guanylyl cyclase alpha(1) subunit in vascular smooth muscle relaxation. Cardiovasc Res 76: 149–159.
[17]
Friebe A, Mergia E, Dangel O, Lange A, Koesling D (2007) Fatal gastrointestinal obstruction and hypertension in mice lacking nitric oxide-sensitive guanylyl cyclase. Proc Natl Acad Sci U S A 104: 7699–7704.
[18]
Russwurm M, Behrends S, Harteneck C, Koesling D (1998) Functional properties of a naturally occurring isoform of soluble guanylyl cyclase. Biochem J 335: 125–130.
[19]
Kotikoski H, Vapaatalo H, Oksala O (2003) Nitric oxide and cyclic GMP enhance aqueous humor outflow facility in rabbits. Curr Eye Res 26: 119–123.
[20]
Ellis DZ, Dismuke WM, Chokshi BM (2009) Characterization of soluble guanylate cyclase in NO-induced increases in aqueous humor outflow facility and in the trabecular meshwork. Invest Ophthalmol Vis Sci 50: 1808–1813.
[21]
Krauss AH, Impagnatiello F, Toris CB, Gale DC, Prasanna G, et al. (2011) Ocular hypotensive activity of BOL-303259-X, a nitric oxide donating prostaglandin F2alpha agonist, in preclinical models. Exp Eye Res 93: 250–255.
[22]
Nathanson JA (1992) Nitrovasodilators as a new class of ocular hypotensive agents. J Pharmacol Exp Ther 260: 956–965.
[23]
Khoobehi B, Chiroli V, Ronchetti D, Miglietta D, Thompson H, et al. (2011) Enhanced oxygen saturation in optic nerve head of non-human primate eyes following the intravitreal injection of NCX 434, an innovative nitric oxide-donating glucocorticoid. J Ocul Pharmacol Ther 27: 115–121.
[24]
Galassi F, Renieri G, Sodi A, Ucci F, Vannozzi L, et al. (2004) Nitric oxide proxies and ocular perfusion pressure in primary open angle glaucoma. Br J Ophthalmol 88: 757–760.
[25]
Chang CJ, Chiang CH, Chow JC, Lu DW (2000) Aqueous humor nitric oxide levels differ in patients with different types of glaucoma. J Ocul Pharmacol Ther 16: 399–406.
[26]
Kang JH, Wiggs JL, Rosner BA, Hankinson SE, Abdrabou W, et al. (2010) Endothelial nitric oxide synthase gene variants and primary open-angle glaucoma: interactions with sex and postmenopausal hormone use. Invest Ophthalmol Vis Sci 51: 971–979.
[27]
Magalhaes da Silva T, Rocha AV, Lacchini R, Marques CR, Silva ES, et al. (2012) Association of polymorphisms of endothelial nitric oxide synthase (eNOS) gene with the risk of primary open angle glaucoma in a Brazilian population. Gene 502: 142–146.
[28]
Weiss J, Frankl SA, Flammer J, Grieshaber MC, Hollo G, et al. (2012) No difference in genotype frequencies of polymorphisms of the nitric oxide pathway between Caucasian normal and high tension glaucoma patients. Mol Vis 18: 2174–2181.
[29]
Polak K, Luksch A, Berisha F, Fuchsjaeger-Mayrl G, Dallinger S, et al. (2007) Altered nitric oxide system in patients with open-angle glaucoma. Arch Ophthalmol 125: 494–498.
[30]
Nathanson JA, McKee M (1995) Alterations of ocular nitric oxide synthase in human glaucoma. Invest Ophthalmol Vis Sci 36: 1774–1784.
[31]
Buys ES, Sips P, Vermeersch P, Raher MJ, Rogge E, et al. (2008) Gender-specific hypertension and responsiveness to nitric oxide in sGC{alpha}1 knockout mice. Cardiovasc Res 79: 179–186.
[32]
Sandbach JM, Coscun PE, Grossniklaus HE, Kokoszka JE, Newman NJ, et al. (2001) Ocular pathology in mitochondrial superoxide dismutase (Sod2)-deficient mice. Invest Ophthalmol Vis Sci 42: 2173–2178.
[33]
Anderson MG, Libby RT, Gould DB, Smith RS, John SW (2005) High-dose radiation with bone marrow transfer prevents neurodegeneration in an inherited glaucoma. Proc Natl Acad Sci U S A 102: 4566–4571.
[34]
Haddadin RI, Oh DJ, Kang MH, Filippopoulos T, Gupta M, et al. (2009) SPARC-null mice exhibit lower intraocular pressures. Invest Ophthalmol Vis Sci 50: 3771–3777.
[35]
Brown AS, Zhang M, Cucevic V, Pavlin CJ, Foster FS (2005) In vivo assessment of postnatal murine ocular development by ultrasound biomicroscopy. Curr Eye Res 30: 45–51.
[36]
Avila MY, Mitchell CH, Stone RA, Civan MM (2003) Noninvasive assessment of aqueous humor turnover in the mouse eye. Invest Ophthalmol Vis Sci 44: 722–727.
[37]
Alt C, Lin CP (2012) In vivo quantification of microglia dynamics with a scanning laser ophthalmoscope in a mouse model of focal laser injury. Proceedings of SPIE 8209: 820907.
[38]
Wiggs JL, Kang JH, Yaspan BL, Mirel DB, Laurie C, et al. (2011) Common variants near CAV1 and CAV2 are associated with primary open-angle glaucoma in Caucasians from the USA. Hum Mol Genet 20: 4707–4713.
[39]
Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, et al. (2002) The human genome browser at UCSC. Genome Res 12: 996–1006.
[40]
Wu RY, Ma N (2012) Expression of nitric oxide synthase and guanylate cyclase in the human ciliary body and trabecular meshwork. Chin Med J (Engl) 125: 129–133.
[41]
Gibbs SM, Becker A, Hardy RW, Truman JW (2001) Soluble guanylate cyclase is required during development for visual system function in Drosophila. J Neurosci 21: 7705–7714.
[42]
Haberecht MF, Schmidt HH, Mills SL, Massey SC, Nakane M, et al. (1998) Localization of nitric oxide synthase, NADPH diaphorase and soluble guanylyl cyclase in adult rabbit retina. Vis Neurosci 15: 881–890.
[43]
Kajimura M, Shimoyama M, Tsuyama S, Suzuki T, Kozaki S, et al. (2003) Visualization of gaseous monoxide reception by soluble guanylate cyclase in the rat retina. Faseb J 17: 506–508.
[44]
Blute TA, Velasco P, Eldred WD (1998) Functional localization of soluble guanylate cyclase in turtle retina: modulation of cGMP by nitric oxide donors. Vis Neurosci 15: 485–498.
[45]
Buys ES, Raher MJ, Kirby A, Mohd S, Baron DM, et al. (2012) Genetic modifiers of hypertension in soluble guanylate cyclase alpha1-deficient mice. J Clin Invest 122: 2316–2325.
[46]
Gabriele ML, Ishikawa H, Schuman JS, Bilonick RA, Kim J, et al. (2010) Reproducibility of spectral-domain optical coherence tomography total retinal thickness measurements in mice. Invest Ophthalmol Vis Sci 51: 6519–6523.
[47]
Marini M, Da Pozzo S, Accardo A, Canziani T (2011) Comparing applanation tonometry and rebound tonometry in glaucomatous and ocular hypertensive eyes. Eur J Ophthalmol 21: 258–263.
[48]
John SW, Smith RS, Savinova OV, Hawes NL, Chang B, et al. (1998) Essential iris atrophy, pigment dispersion, and glaucoma in DBA/2J mice. Invest Ophthalmol Vis Sci 39: 951–962.
[49]
Libby RT, Smith RS, Savinova OV, Zabaleta A, Martin JE, et al. (2003) Modification of ocular defects in mouse developmental glaucoma models by tyrosinase. Science 299: 1578–1581.
[50]
Atochin DN, Yuzawa I, Li Q, Rauwerdink KM, Malhotra R, et al. (2010) Soluble guanylate cyclase alpha1beta1 limits stroke size and attenuates neurological injury. Stroke 41: 1815–1819.
[51]
Mergia E, Russwurm M, Zoidl G, Koesling D (2003) Major occurrence of the new alpha(2)beta(1) isoform of NO-sensitive guanylyl cyclase in brain. Cell Signal 15: 189–195.
[52]
Chen J, Runyan SA, Robinson MR (2011) Novel ocular antihypertensive compounds in clinical trials. Clin Ophthalmol 5: 667–677.
[53]
Weinreb RN, Kaufman PL (2009) The glaucoma research community and FDA look to the future: a report from the NEI/FDA CDER Glaucoma Clinical Trial Design and Endpoints Symposium. Invest Ophthalmol Vis Sci 50: 1497–1505.
[54]
Rosa RH Jr, Hein TW, Yuan Z, Xu W, Pechal MI, et al. (2006) Brimonidine evokes heterogeneous vasomotor response of retinal arterioles: diminished nitric oxide-mediated vasodilation when size goes small. Am J Physiol Heart Circ Physiol 291: H231–238.
[55]
Feke GT, Hazin R, Grosskreutz CL, Pasquale LR (2011) Effect of brimonidine on retinal blood flow autoregulation in primary open-angle glaucoma. J Ocul Pharmacol Ther 27: 347–352.
[56]
Krupin T, Liebmann JM, Greenfield DS, Ritch R, Gardiner S (2011) A randomized trial of brimonidine versus timolol in preserving visual function: results from the Low-Pressure Glaucoma Treatment Study. Am J Ophthalmol 151: 671–681.
[57]
Pasquale LR, Feke GT, Harris A (2012) Why the low-pressure glaucoma treatment study makes sense. Expert Rev Ophthalmology 7: 295–297.
[58]
Konstas AG, Quaranta L, Mikropoulos DG, Nasr MB, Russo A, et al. (2012) Peak intraocular pressure and glaucomatous progression in primary open-angle glaucoma. J Ocul Pharmacol Ther 28: 26–32.
[59]
Glaucoma Laser Trial Research Group (1995) The Glaucoma Laser Trial (GLT) and glaucoma laser trial follow-up study: 7. Results. Am J Ophthalmol 120: 718–731.
[60]
Leske MC, Heijl A, Hyman L, Bengtsson B, Dong L, et al. (2007) Predictors of long-term progression in the early manifest glaucoma trial. Ophthalmology 114: 1965–1972.
[61]
Aihara M, Lindsey JD, Weinreb RN (2003) Aqueous humor dynamics in mice. Invest Ophthalmol Vis Sci 44: 5168–5173.
[62]
Rao VP, Epstein DL (2007) Rho GTPase/Rho kinase inhibition as a novel target for the treatment of glaucoma. BioDrugs 21: 167–177.
[63]
Honjo M, Tanihara H, Inatani M, Kido N, Sawamura T, et al. (2001) Effects of rho-associated protein kinase inhibitor Y-27632 on intraocular pressure and outflow facility. Invest Ophthalmol Vis Sci 42: 137–144.
[64]
Ellis DZ, Sharif NA, Dismuke WM (2010) Endogenous regulation of human Schlemm's canal cell volume by nitric oxide signaling. Invest Ophthalmol Vis Sci 51: 5817–5824.
[65]
Reilly PM, Bulkley GB (1993) Vasoactive mediators and splanchnic perfusion. Crit Care Med 21: S55–68.
[66]
Cone FE, Gelman SE, Son JL, Pease ME, Quigley HA (2010) Differential susceptibility to experimental glaucoma among 3 mouse strains using bead and viscoelastic injection. Exp Eye Res 91: 415–424.
[67]
McKinnon SJ, Schlamp CL, Nickells RW (2009) Mouse models of retinal ganglion cell death and glaucoma. Exp Eye Res 88: 816–824.
[68]
Weinreb RN, Lindsey JD (2005) The importance of models in glaucoma research. J Glaucoma 14: 302–304.
[69]
Zode GS, Kuehn MH, Nishimura DY, Searby CC, Mohan K, et al. (2011) Reduction of ER stress via a chemical chaperone prevents disease phenotypes in a mouse model of primary open angle glaucoma. J Clin Invest 121: 3542–3553.
[70]
Aihara M, Lindsey JD, Weinreb RN (2003) Ocular hypertension in mice with a targeted type I collagen mutation. Invest Ophthalmol Vis Sci 44: 1581–1585.
[71]
Mabuchi F, Lindsey JD, Aihara M, Mackey MR, Weinreb RN (2004) Optic nerve damage in mice with a targeted type I collagen mutation. Invest Ophthalmol Vis Sci 45: 1841–1845.
[72]
Dai Y, Lindsey JD, Duong-Polk X, Nguyen D, Hofer A, et al. (2009) Outflow facility in mice with a targeted type I collagen mutation. Invest Ophthalmol Vis Sci 50: 5749–5753.
[73]
Fan BJ, Wiggs JL (2010) Glaucoma: genes, phenotypes, and new directions for therapy. J Clin Invest 120: 3064–3072.
[74]
Burdon KP (2012) Genome-wide association studies in the hunt for genes causing primary open-angle glaucoma: a review. Clin Experiment Ophthalmol 40: 358–363.
[75]
Ehret GB, Munroe PB, Rice KM, Bochud M, Johnson AD, et al. (2011) Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 478: 103–109.
[76]
Wiggs JL, Hauser MA, Abdrabou W, Allingham RR, Budenz DL, et al.. (2012) The NEIGHBOR Consortium Primary Open-Angle Glaucoma Genome-wide Association Study: Rationale, Study Design, and Clinical Variables. J Glaucoma. Epub Date: 2012/07/26.
[77]
Majsterek I, Malinowska K, Stanczyk M, Kowalski M, Blaszczyk J, et al. (2011) Evaluation of oxidative stress markers in pathogenesis of primary open-angle glaucoma. Exp Mol Pathol 90: 231–237.
[78]
Stasch JP, Schmidt PM, Nedvetsky PI, Nedvetskaya TY, H SA, et al. (2006) Targeting the heme-oxidized nitric oxide receptor for selective vasodilatation of diseased blood vessels. J Clin Invest 116: 2552–2561.
[79]
Evgenov OV, Pacher P, Schmidt PM, Hasko G, Schmidt HH, et al. (2006) NO-independent stimulators and activators of soluble guanylate cyclase: discovery and therapeutic potential. Nat Rev Drug Discov 5: 755–768.
[80]
Stasch JP, Pacher P, Evgenov OV (2011) Soluble guanylate cyclase as an emerging therapeutic target in cardiopulmonary disease. Circulation 123: 2263–2273.
[81]
Francis SH, Blount MA, Corbin JD (2011) Mammalian cyclic nucleotide phosphodiesterases: molecular mechanisms and physiological functions. Physiol Rev 91: 651–690.
[82]
McKie PM, Sangaralingham SJ, Burnett JC Jr (2010) CD-NP: an innovative designer natriuretic peptide activator of particulate guanylyl cyclase receptors for cardiorenal disease. Curr Heart Fail Rep 7: 93–99.