All Title Author
Keywords Abstract

PLOS ONE  2013 

Genetic Surveillance Detects Both Clonal and Epidemic Transmission of Malaria following Enhanced Intervention in Senegal

DOI: 10.1371/journal.pone.0060780

Full-Text   Cite this paper   Add to My Lib


Using parasite genotyping tools, we screened patients with mild uncomplicated malaria seeking treatment at a clinic in Thiès, Senegal, from 2006 to 2011. We identified a growing frequency of infections caused by genetically identical parasite strains, coincident with increased deployment of malaria control interventions and decreased malaria deaths. Parasite genotypes in some cases persisted clonally across dry seasons. The increase in frequency of genetically identical parasite strains corresponded with decrease in the probability of multiple infections. Further, these observations support evidence of both clonal and epidemic population structures. These data provide the first evidence of a temporal correlation between the appearance of identical parasite types and increased malaria control efforts in Africa, which here included distribution of insecticide treated nets (ITNs), use of rapid diagnostic tests (RDTs) for malaria detection, and deployment of artemisinin combination therapy (ACT). Our results imply that genetic surveillance can be used to evaluate the effectiveness of disease control strategies and assist a rational global malaria eradication campaign.


[1]  World Health Organization (2011) World malaria report 2011. World Health Organization 246.Geneva:
[2]  Volkman SK, Sabeti PC, DeCaprio D, Neafsey DE, Schaffner SF, et al. (2007) A genome-wide map of diversity in Plasmodium falciparum. Nat Genet 39: 113–119 doi:10.1038/ng1930.
[3]  Mzilahowa T, Mccall PJ, Hastings IM (2007) “Sexual” Population Structure and Genetics of the Malaria Agent P. falciparum. PLoS ONE 2: e613 doi:10.1371/journal.pone.0000613.t001.
[4]  Anderson TJ, Haubold B, Williams JT, Estrada-Franco JG, Richardson L, et al. (2000) Microsatellite markers reveal a spectrum of population structures in the malaria parasite Plasmodium falciparum. Mol Biol Evol 17: 1467–1482.
[5]  Neafsey DE, Schaffner SF, Volkman SK, Park D, Montgomery P, et al. (2008) Genome-wide SNP genotyping highlights the role of natural selection in Plasmodium falciparum population divergence. Genome Biol 9: R171 doi:10.1186/gb-2008-9-12-r171.
[6]  Van Tyne D, Park DJ, Schaffner SF, Neafsey DE, Angelino E, et al. (2011) Identification and Functional Validation of the Novel Antimalarial Resistance Locus PF10_0355 in Plasmodium falciparum. PLoS Genet 7: e1001383 doi:10.1371/journal.pgen.1001383.
[7]  Daniels R, Volkman SK, Milner DA, Mahesh N, Neafsey DE, et al. (2008) A general SNP-based molecular barcode for Plasmodium falciparum identification and tracking. Malar J 7: 223 doi:10.1186/1475-2875-7-223.
[8]  Malaria RB (2010) Focus on Senegal—progress and impact series. World Health Organization.Geneva:
[9]  Smith JM, Smith NH, O'Rourke M (1993) How clonal are bacteria?
[10]  Haubold B, Hudson RR (2000) LIAN 3.0: detecting linkage disequilibrium in multilocus data. Linkage Analysis. Bioinformatics 16: 847–848.
[11]  Branch OH, Sutton PL, Barnes C, Castro JC, Hussin J, et al. (2011) Plasmodium falciparum genetic diversity maintained and amplified over 5 years of a low transmission endemic in the Peruvian Amazon. Mol Biol Evol 28: 1973–1986 doi:10.1093/molbev/msq311.
[12]  Griffing SM, Mixson-Hayden T, Sridaran S, Alam MT, McCollum AM, et al. (2011) South American Plasmodium falciparum after the malaria eradication era: clonal population expansion and survival of the fittest hybrids. PLoS ONE 6: e23486 doi:10.1371/journal.pone.0023486.
[13]  Nkhoma SC, Nair S, Al-Saai S, Ashley E, McGready R, et al.. (2012) Population genetic correlates of declining transmission in a human pathogen. Mol Ecol. doi:10.1111/mec.12099
[14]  Roper C, Elhassan IM, Hviid L, Giha H, Richardson W, et al. (1996) Detection of very low level Plasmodium falciparum infections using the nested polymerase chain reaction and a reassessment of the epidemiology of unstable malaria in Sudan. Am J Trop Med Hyg 54: 325–331.
[15]  Echeverry DF, Nair S, Osorio L, Menon S, Murillo C, et al. (2013) Long term persistence of clonal malaria parasite Plasmodium falciparum lineages in the Colombian Pacific region. BMC Genet 14: 2 doi:10.1186/1471-2156-14-2.
[16]  Mobegi VAV, Loua KMK, Ahouidi ADA, Satoguina JJ, Nwakanma DCD, et al. (2012) Population genetic structure of Plasmodium falciparum across a region of diverse endemicity in West Africa. Malar J 11: 223–223 doi:10.1186/1475-2875-11-223.
[17]  Jeffares DCD, Pain AA, Berry AA, Cox AVA, Stalker JJ, et al. (2007) Genome variation and evolution of the malaria parasite Plasmodium falciparum. Nat Genet 39: 120–125 doi:10.1038/ng1931.
[18]  Mu JJ, Awadalla PP, Duan JJ, McGee KMK, Keebler JJ, et al. (2007) Genome-wide variation and identification of vaccine targets in the Plasmodium falciparum genome. Nat Genet 39: 126–130 doi:10.1038/ng1924.
[19]  Ndiaye D, Patel V, Demas A, LeRoux M, Ndir O, et al. (2010) A non-radioactive DAPI-based high-throughput in vitro assay to assess Plasmodium falciparum responsiveness to antimalarials--increased sensitivity of P. falciparum to chloroquine in Senegal. Am J Trop Med Hyg 82: 228–230 doi:10.4269/ajtmh.2010.09-0470.
[20]  Ndiath MO, Mazenot C, Gaye A, Konate L, Bouganali C, et al. (2011) Methods to collect Anopheles mosquitoes and evaluate malaria transmission: a comparative study in two villages in Senegal. Malar J 10: 270 doi:10.1186/1475-2875-10-270.
[21]  Waples RS (1989) A generalized approach for estimating effective population size from temporal changes in allele frequency. Genetics 121: 379–391.
[22]  Anderson EC (2005) An efficient Monte Carlo method for estimating Ne from temporally spaced samples using a coalescent-based likelihood. Genetics 170: 955–967 doi:10.1534/genetics.104.038349.


comments powered by Disqus

Contact Us


微信:OALib Journal