All Title Author
Keywords Abstract

PLOS ONE  2013 

Quantitative PCR Reveals Strong Spatial and Temporal Variation of the Wasting Disease Pathogen, Labyrinthula zosterae in Northern European Eelgrass (Zostera marina) Beds

DOI: 10.1371/journal.pone.0062169

Full-Text   Cite this paper   Add to My Lib


Seagrass beds are the foundation species of functionally important coastal ecosystems worldwide. The world’s largest losses of the widespread seagrass Zostera marina (eelgrass) have been reported as a consequence of wasting disease, an infection with the endophytic protist Labyrinthula zosterae. During one of the most extended epidemics in the marine realm, ~90% of East and Western Atlantic eelgrass beds died-off between 1932 and 1934. Today, small outbreaks continue to be reported, but the current extent of L. zosterae in European meadows is completely unknown. In this study we quantify the abundance and prevalence of the wasting disease pathogen among 19 Z. marina populations in northern European coastal waters, using quantitative PCR (QPCR) with primers targeting a species specific portion of the internally transcribed spacer (ITS1) of L. zosterae. Spatially, we found marked variation among sites with abundances varying between 0 and 126 cells mg?1 Z. marina dry weight (mean: 5.7 L. zosterae cells mg?1 Z. marina dry weight ±1.9 SE) and prevalences ranged from 0–88.9%. Temporarily, abundances varied between 0 and 271 cells mg?1 Z. marina dry weight (mean: 8.5±2.6 SE), while prevalences ranged from zero in winter and early spring to 96% in summer. Field concentrations accessed via bulk DNA extraction and subsequent QPCR correlated well with prevalence data estimated via isolation and cultivation from live plant tissue. L. zosterae was not only detectable in black lesions, a sign of Labyrinthula-induced necrosis, but also occurred in green, apparently healthy tissue. We conclude that L. zosterae infection is common (84% infected populations) in (northern) European eelgrass populations with highest abundances during the summer months. In the light of global climate change and increasing rate of marine diseases our data provide a baseline for further studies on the causes of pathogenic outbreaks of L. zosterae.


[1]  Orth RJ, Carruthers TJB, Dennison WC, Duarte CM, Fourqurean JW, et al. (2006) A Global Crisis for Seagrass Ecosystems. BioScience 56: 987–996.
[2]  Costanza R, d'Arge R, de Groot R, Farber S, Grasso M, et al. (1997) The value of the world's ecosystem services and natural capital. Nature 387: 253–260.
[3]  Duffy JE (2006) Biodiversity and the functioning of seagrass ecosystems. Mar Ecol-Prog Ser 311: 233–250.
[4]  Waycott M, Duarte CM, Carruthers TJB, Orth RJ, Dennison WC, et al. (2009) Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc Natl Acad Sci USA 106: 12377–12381.
[5]  Muehlstein LK (1989) Perspectives on the wasting disease of eelgrass Zostera marina. Dis Aquat Organ 7: 211–221.
[6]  Harvell CD, Kim K, Burkholder JM, Colwell RR, Epstein PR, et al. (1999) Emerging Marine Diseases–Climate Links and Anthropogenic Factors. Science 285: 1505–1510.
[7]  Jones KE, Patel GP, Levy MA, Storeygard A, Balk D, et al. (2008) Global trends in emerging infectious diseases. Nature 451: 990–993.
[8]  Reise K, Herre E, Sturm M (1989) Historical changes in the benthos of the Wadden Sea around the island of Sylt in the North Sea. Helgoland Mar Res 43: 417–433.
[9]  de Jonge V, de Jong D, van den Bergs J (1996) Reintroduction of eelgrass (Zostera marina) in the Dutch Wadden Sea; Review of research and suggestions for management measures. J Coastal Cons 2: 149–158.
[10]  Bostr?m C, Baden SP, Krause-Jensen D (2003) The seagrasses of Scandinavia and the Baltic Sea. In: Green EP, Short FT (eds) World Atlas of Seagrasses. University of California Press, Berkeley, 27–37.
[11]  Meyer T, Nehring S (2006) Anpflanzung von Seegraswiesen (Zostera marina L.) als interne Ma?nahme zur Restaurierung der Ostsee - Plantation of seagrass beds (Zostera marina L.) as internal measure for restoration of the Baltic Sea. Rostock. Meeresbiolog Beitr 15: 105–119.
[12]  Godet L, Fournier J, van Katwijk M, Olivier F, Le Mao P, et al. (2008) Before and after wasting disease in common eelgrass Zostera marina along the French Atlantic coasts: a general overview and first accurate mapping. Dis Aquat Organ 79: 249–255.
[13]  Wohlenberg E (1935) Beobachtungen über das Seegras, Zostera marina L., und seine Erkrankung im nordfriesischen Wattenmeer. Beitr?ge zur Heimatforschung in Schleswig-Holstein, Hamburg und Lübeck, Sonderdruck aus Nordelbingen 11: 1–19.
[14]  Wyllie-Echeverria S, Cox PA (1999) The seagrass (Zostera marina, Zosteraceae) industry of Nova Scotia (1907–1960). Econom Bot 53: 419–426.
[15]  Cottam C (1933) Disappearance of eelgrass along the Atlantic Coast. Plant Dis Rep 17: 46–53.
[16]  Cotton AD (1933) Disappearance of Zostera marina. Nature 132: 483–483.
[17]  Fischer-Piette E, Heim R, Larni R (1932) Note preliminaire sur une maladie bacterienne des Zosteres. Compt Rend Acad Sc Paris 195: 1420.
[18]  van der Werff A (1938) A new parasitic organism in Zostera marina. Chron Bot 4: 498–499.
[19]  Butcher RW (1934) Zostera, Report on the present condition of Eel Grass on the coasts of England, based on a survey during August to October 1933. J du Conseil 9.
[20]  Blegvad H (1935) En epidemisk sygdom i b?ndeltangen (Zostera marina L.). In: Blegvad H (ed) Beretning til Mineteriet for S?fart og Fisken fra den Danske Biologiske Station. C.A. Reitzels Forlag, K?benhavn, 1–8.
[21]  Addy CE, Aylward DA (1944) Status of Eelgrass in Massachusetts during 1943. J Wildlife Manage 8: 269–275.
[22]  Blois JC, Francaz JM, Gaudichon M, Gaudichon S, Le Bris L (1961) Observations sur les herbiers à Zostères de la région de Roscoff. Cah Biol Mar 2: 223–262.
[23]  Rasmussen E (1977) The wasting disease of eelgrass (Zostera marina) and its effects on environmental factors and fauna. In: McRoy CH, Hellferish C (eds) Seagrass ecosystems, a scientific perspective. Marcel Dekker, New York, 1–51.
[24]  Short FT, Ibelings BW, Den Hartog C (1988) Comparison of a current eelgrass disease to the wasting disease in the 1930s. Aquatic Botany 30: 295–304.
[25]  Reise K, Kohlus J (2008) Seagrass recovery in the Northern Wadden Sea? Helgoland Marine Research 62: 77–84.
[26]  Kastler T, Michaelis H (1997) Der Rückgang der Seegrasbest?nde im nieders?chsischen Wattenmeer. Berichte der Forschungsstelle Küste 41: 119–139.
[27]  Dolch T, Buschbaum C, Reise K (2009) Seegras-Monitoring im Schleswig-Holsteinischen Wattenmeer 2008. Landesamtes für Landwirtschaft, Umwelt und l?ndliche R?ume des Landes Schleswig-Holstein, Flintbek.
[28]  Short FT, Muehlstein LK, Porter D (1987) Eelgrass wasting disease: Cause and recurrence of a marine epidemic. Biol Bull 173: 557–562.
[29]  Renn CE (1936) The Wasting Disease of Zostera marina. I. A Phytological Investigation of the Diseased Plant. Biol Bull 70 148–158.
[30]  Muehlstein LK, Porter D, Short FT (1991) Labyrinthula zosterae sp. nov., the causative agent of wasting disease of eelgrass, Zostera marina. Mycologia 83: 180–191.
[31]  den Hartog C (1989) Early records of wasting-disease-like damage patterns in eelgrass Zostera marina. Dis Aquat Organ 7: 223–226.
[32]  Bockelmann AC, Beining K, Reusch TBH (2012) Widespread occurrence of endophytic Labyrinthula spp. in northern European eelgrass Zostera marina beds. Mar Ecol Prog Ser 445: 109–116.
[33]  Burdick DM, Short FT, Wolf J (1993) An Index to Assess and Monitor the Progression of Wasting Disease in Eelgrass Zostera marina. Mar Ecol Prog Ser 94: 83–90.
[34]  Hily C, Raffin C, Brun A, den Hartog C (2002) Spatio-temporal variability of wasting disease symptoms in eelgrass meadows of Brittany (France). Aquat Bot 72: 37–53.
[35]  Bergmann N, Fricke B, Schmidt MC, Tams V, Beining K, et al. (2011) A quantitative real-time PCR assay for the seagrass pathogen Labyrinthula zosterae. Mol Ecol Res 11: 1076–1081.
[36]  Oetjen K, Reusch TBH (2007) Genome scans detect consistent divergent selection among subtidal vs. intertidal populations of the marine angiosperm Zostera marina. Mol Ecol 16: 5156–5157.
[37]  Pokorny KS (1967) Labyrinthula. J Eukaryot Microbiol 14: 697–708.
[38]  Amon JP, Perkins FO (1968) Structure of Labyrinthula sp. Zoospores. J Protozool 15: 543–546.
[39]  Bartsch G (1971) Cytologische Beobachtungen an Labyrinthula coenocystis Schmoller bei verschiedenen Kulturbedingungen. Zeitschrift für Allg. Mikrobiologie 11: 79–90.
[40]  Porter D (1990) Phylum Labyrinthulomycota. In: Margulis L,Corliss JO, Melkonian M, Chapman DJ (eds) Handbook of Protoctista. Jones and Bartlett Publishers, Boston.
[41]  Anderson RM, May RM (1978) Regulation of stability of host-parasite population interactions. I. Regulatory Processes, J Anim Ecol 47: 219–247.
[42]  Thrall PH, Burdon JJ (2003) Evolution of virulence in a plant host-pathogen metapopulation. Science 299: 1735–1737.
[43]  Gilbert GS (2002) Evolutionary ecology of plant diseases in natural ecosystems. Annu Rev Phytopathol 40: 13–43.
[44]  Cheplick GP, Faeth SH (2009) Ecology and evolution of the grass-endophyte symbiosis. Oxford University Press, Oxford.
[45]  Ralph PJ, Short FT (2002) Impact of the wasting disease pathogen, Labyrinthula zosterae, on the photobiology of eelgrass Zostera marina. Mar Ecol Prog Ser 226: 265–271.
[46]  Giesen WBJT, Van Katwijk MM, Den Hartog C (1990) Temperature, salinity, insolation and wasting disease of eelgrass (Zostera marina L.) in the Dutch Wadden Sea in the 1930's. Netherlands J Sea Res 25: 395–404.
[47]  Vergeer LHT, Aarts TL, de Groot JD (1995) The `wasting disease' and the effect of abiotic factors (light intensity, temperature, salinity) and infection with Labyrinthula zosterae on the phenolic content of Zostera marina shoots. Aquat Bot 52: 35–44.
[48]  McKone KL, Tanner CE (2009) Role of salinity in the susceptibility of eelgrass Zostera marina to the wasting disease pathogen Labyrinthula zosterae. Mar Ecol Prog Ser 377: 123–130.
[49]  Bowles JW, Bell SS (2004) Simulated herbivory and the dynamics of disease in Thalassia testudinum. Mar Ecol Prog Ser 283: 127–132.
[50]  Raghukumar S, Damare VS (2011) Increasing evidence for the important role of Labyrinthulomycetes in marine ecosystems. Bot Mar 54: 3–11.
[51]  Saikkonen K, W?li P, Helander M (2004) Faeth SH (2004) Evolution of endophyte plant symbioses. Trends Plant Sci 9: 275–280.
[52]  Paszkowski U (2006) Mutualism and parasitism: the yin and yang of plant symbioses. Curr Opin Plant Biol 9: 364–370.
[53]  van Loon LC, Bakker PA, Pieterse CM (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36: 453–483.
[54]  Ramamoorthy V, Viswanathan R, Raguchander T, Prakasam V, Samiyappan R (2001) Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases. Crop Prot 20: 1–11.
[55]  Schmoller H (1960) Kultur und Entwicklung von Labyrinthula coenocystis n. sp. Arch f Mikrobiol 36: 365–372.
[56]  Johnson NC, Graham JH, Smith FA (1997) Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytol 135: 575–585.
[57]  Kniskern JM, Rausher MD (2006) Environmental variation mediates the deleterious effects of Coleosporium ipomoeae on Ipomoea pupurea. Ecology 87: 675–685.
[58]  Steele L, Caldwell M, Boettcher AA, Arnold T (2005) Seagrass-pathogen interactions : 'pseudo-induction' of turtlegrass phenolics near wasting disease lesions. Mar Ecol Prog Ser 303: 123–131.
[59]  Muehlstein LK, Porter D, Short FT (1988) Labyrinthula sp., a marine slime mold producing the symptoms of wasting disease in eelgrass, Zostera marina. Mar Biol 99: 465–472.
[60]  Martin DL, Boone E, Caldwell MM, Major KM, Boettcher AA (2009) Liquid culture and growth quantification of the seagrass pathogen, Labyrinthula spp. Mycologia 101: 632–635.
[61]  Cook T, Folli M, Klinck J, Ford S, Miller J (1998) The Relationship between Increasing Sea-surface Temperature and the Northward Spread of Perkinsus marinus (Dermo) Disease Epizootics in Oysters. Estuar Coast Shelf Sci 46: 587–597.
[62]  Ward JR, Lafferty KD (2004) The Elusive Baseline of Marine Disease: Are Diseases in Ocean Ecosystems Increasing? PLoS Biol 2: 0542–0547.
[63]  Karvonen A, Rintam?ki Pi, Jokela J, Valtonen ET (2010) Increasing water temperature and disease risks in aquatic systems: Climate change increases the risk of some, but not all, diseases. Int J Parasitol 40: 1483–1488.
[64]  Garrett KA, Dendy SP, Frank EE, Rouse MN, Travers SE (2006) Climate Change Effects on Plant Disease: Genomes to Ecosystems. Annu Rev Phytopathol 44: 489–509.


comments powered by Disqus