All Title Author
Keywords Abstract

PLOS ONE  2013 

Managing Hytrosavirus Infections in Glossina pallidipes Colonies: Feeding Regime Affects the Prevalence of Salivary Gland Hypertrophy Syndrome

DOI: 10.1371/journal.pone.0061875

Full-Text   Cite this paper   Add to My Lib


Many species of tsetse flies are infected by a virus that causes salivary gland hypertrophy (SGH) syndrome and the virus isolated from Glossina pallidipes (GpSGHV) has recently been sequenced. Flies with SGH have a reduced fecundity and fertility. Due to the deleterious impact of SGHV on G. pallidipes colonies, several approaches were investigated to develop a virus management strategy. Horizontal virus transmission is the major cause of the high prevalence of the GpSGHV in tsetse colonies. Implementation of a “clean feeding” regime (fresh blood offered to each set of flies so that there is only one feed per membrane), instead of the regular feeding regime (several successive feeds per membrane), was among the proposed approaches to reduce GpSGHV infections. However, due to the absence of disposable feeding equipment (feeding trays and silicone membranes), the implementation of a clean feeding approach remains economically difficult. We developed a new clean feeding approach applicable to large-scale tsetse production facilities using existing resources. The results indicate that implementing this approach is feasible and leads to a significant reduction in virus load from 109 virus copies in regular colonies to an average of 102.5 and eliminates the SGH syndrome from clean feeding colonies by28 months post implementation of this approach. The clean feeding approach also reduced the virus load from an average of 108 virus copy numbers to an average of 103 virus copies and SGH prevalence of 10% to 4% in flies fed after the clean fed colony. Taken together, these data indicate that the clean feeding approach is applicable in large-scale G. pallidipes production facilities and eliminates the deleterious effects of the virus and the SGH syndrome in these colonies.


[1]  WHO (2001) Scientific Working group on African Trypanosomiasis (sleeping sickness), WHO/TDR Committee Report. World Health Organization, Geneva, Switzerland.
[2]  Steelman CD (1976) Effects of external and internal arthropod parasites on domestic livestock production. Annu Rev Entomol 21: 155–78
[3]  Jordan AM (1986) Trypanosomiasis control and African rural development. London: Longman. 357 p.
[4]  Geerts S, Holmes PH, Diall O, Eisler MC (2001) African bovine trypanosomiasis: the problem of drug resistance. Trends Parasitol 17: 25–28.
[5]  Leak SGA (1998) Tsetse biology and ecology: their role in the epidemiology and control of trypanosomosis. Wallingford: CABI Publishing. xxiii +568 p.
[6]  Hendrichs J, Kenmore P, Robinson AS, Vreysen MJB (2007) Area-Wide Integrated Pest Management (AW - IPM): Principles, Practice and Prospects. In: Vreysen MJB, Robinson AS, Hendrichs J editors. Area-wide control of insect pests. From research to field implementation. Dordrecht, The Netherlands: Springer. 3–33.
[7]  Vreysen MJB, Saleh KM, Ali MY, Abdulla AM, Zhu Z-R, et al. (2000) Glossina austeni (Diptera: Glossinidae) eradicated on the island of Unguja, Zanzibar, using the sterile insect technique. J Econ Entomol 93: 123–135.
[8]  Feldmann U, Dyck VA, Mattioli RC, Jannin J (2005) Potential impact of tsetse fly control involving the sterile insect technique. In: Dyck VA, Hendrichs J, Robinson AS editors. Sterile Insect Technique. Principles and Practice in Area-Wide Integrated Pest Management. Dordrecht, The Netherlands: Springer. 701–723.
[9]  Alemu T, Kapitano B, Mekonnen S, Aboset G, Kiflom M et al.. (2007) Area-wide control of tsetse and trypanosomosis: Ethiopian experience in the Southern Rift Valley. In: Vreysen MJB, Robinson AS, Hendrichs J editors. Area-Wide Control of Insect Pests: From Research to Field Implementation. Dordrecht, The Netherlands: Springer. 325–335.
[10]  Abd-Alla A, Bossin H, Cousserans F, Parker A, Bergoin M, et al. (2007) Development of a non-destructive PCR method for detection of the salivary gland hypertrophy virus (SGHV) in tsetse flies. J Virol Methods 139: 143–149 doi:10.1016/j.jviromet.2006.09.018.
[11]  Abd-Alla AMM, Cousserans F, Parker AG, Jehle JA, Parker NJ, et al. (2008) Genome analysis of a Glossina pallidipes salivary gland hypertrophy virus (GpSGHV) reveals a novel large double-stranded circular DNA virus. J Virol 82: 4595–4611 doi:10.1128/JVI.02588-07.
[12]  Abd-Alla AMM, Kariithi H, Parker AG, Robinson AS, Kiflom M, et al. (2010) Dynamics of the salivary gland hypertrophy virus in laboratory colonies of Glossina pallidipes (Diptera: Glossinidae). Virus Res 150: 103–110 doi:10.1016/j.virusres.2010.03.001.
[13]  Abd-Alla AMM, Parker AG, Vreysen MJB, Bergoin M (2011) Tsetse salivary gland hypertrophy virus: Hope or hindrance for tsetse control? PLoS Negl Trop Dis 5: e1220 doi:10.1371/journal.pntd.0001220.
[14]  Abd-Alla AMM, Vlak JM, Bergoin M, Maruniak JE, Parker AG, et al. (2009) Hytrosaviridae: a proposal for classification and nomenclature of a new insect virus family. Arch Virol 154: 909–918 doi:10.1007/s00705-009-0398-5.
[15]  Lietze VU, Abd-Alla AMM, Vreysen MJB, Geden CJ, Boucias DG (2010) Salivary gland hypertrophy viruses: a novel group of insect pathogenic viruses. Annu Rev Entomol 56: 63–80 doi:10.1146/annurev-ento-120709-144841.
[16]  Sang RC, Jura WGZO, Otieno LH, Mwangi RW (1998) The effects of a DNA virus infection on the reproductive potential of female tsetse flies, Glossina morsitans centralis and Glossina morsitans morsitans (Diptera: Glossinidae). Mem Inst Oswaldo Cruz 93: 861–864.
[17]  Jura WGZO, Otieno LH, Chimtawi MMB (1989) Ultrastructural evidence for trans-ovum transmission of the DNA virus of tsetse, Glossina pallidipes (Diptera: Glossinidae). Curr Microbiol 18: 1–4.
[18]  Sang RC, Jura WGZO, Otieno LH, Ogaja P (1996) Ultrastructural changes in the milk gland of tsetse Glossina morsitans centralis (Diptera; Glissinidae) female infected by a DNA virus. J Invertebr Pathol 68: 253–259.
[19]  Feldmann U (1994) Guidelines for the rearing of tsetse flies using the membrane feeding technique. In: Ochieng’-Odero JPR editor. Techniques of insect rearing for the development of integrated pest and vector management strategies. Nairobi, Kenya: ICIPE Science Press. pp.449–471.
[20]  Kariithi HM, Ahmadi M, Parker AG, Franz G, Ros VID et al.. (2012) Prevalence and genetic variation of salivary gland hypertrophy virus in wild populations of the tsetse fly Glossina pallidipes from southern and eastern Africa. J Invertebr Pathol doi: 10.1016/j.jip.2012.04.016.
[21]  Mutika GN, Marin C, Parker GA, Vreysen MJB, Boucias GD, et al. (2012) Impact of Salivary Gland Hypertrophy Virus Infection on the Mating Success of Male Glossina pallidipes: Consequences for the Sterile Insect Technique. PLoS One 7: e42188 doi:10.1371/journal.pone.0042188.
[22]  Kariithi HM, Ince AI, Boeren S, Vervoort J, Bergoin M, et al. (2010) Proteomic analysis of Glossina pallidipes Salivary Gland Hypertrophy Virus virions for immune intervention in tsetse fly colonies. J Gen Virol 91: 3065–3074 doi:10.1099/vir.0.023671-0.
[23]  Kariithi HM, van Lent JW, Boeren S, Abd-Alla AM, Ince IA, et al. (2013) Correlation between structure, protein composition, morphogenesis and cytopathology of Glossina pallidipes salivary gland hypertrophy virus. J Gen Virol 94: 193–208.
[24]  Abd-Alla AMM, Adun H, Parker AG, Vreysen MJB, Bergoin M (2012) The antiviral drug valacyclovir successfully suppresses salivary gland hypertrophy virus (SGHV) in laboratory colonies of Glossina pallidipes. PLoS One 7: e38417 DOI: 10.1371/journal.pone.0038417.
[25]  Nash TAM, Kernaghan RJ, Boyle JA (1966) The large-scale rearing of Glossina austeni (Newst.) in the laboratory I. The use of pregnant and non-pregnant goats. Ann Trop Med Parasitol 60: 39–47.
[26]  Jordan AM, Nash TAM, Boyle JA (1967) The rearing of Glossina austeni Newst. with lop-eared rabbits as hosts. I. Efficacy of the method. Ann Trop Med Parasitol 61: 182–188.
[27]  Mews AR, Offori E, Baumgartner H, Luger D (1972) Techniques used at the IAEA laboratory for rearing tsetse fly, Glossina morsitans Westwood. 243–254.
[28]  Langley PA (1972) The role of physical and chemical stimuli in the development of in vitro feeding techniques for tsetse flies Glossina spp. (Dipt., Glossinidae). Bull Entomol Res 62: 215–228.
[29]  Pagot J, Itard J, Chomat M (1972) Utilisation d’une membrane synthetique pour la nourriture artificielle des glossines (Diptera-Muscidae). C r hebd Seanc Acad Sci, Paris 275D: 911–912.
[30]  Langley PA, Maly H (1969) Membrane feeding technique for tsetse flies (Glossina spp.). Nature 221: 855–856.
[31]  Langley PA (1972) Further experiments on rearing tsetse flies in the absence of a living host. Trans R Soc frop Med Hyg 66: 310.
[32]  Bauer B, Wetzel H (1976) A new membrane for feeding Glossina morsitans Westw. (Diptera: Glossinidae). Bull Entomol Res 65: 563–565.
[33]  Mews AR, Langley PA, Pimley RW, Flood MET (1977) Large scale rearing of tsetse flies (Glossina spp.) in the absence of a living host. Bull Entomol Res 67: 119–128.
[34]  Feldmann U (1993) Rearing tsetse flies for use in sterile insect technique vector control programmes. In: IAEA/FAO editor. Management of Insect Pests: Nuclear and Related Molecular and Genetic Techniques. Vienna: IAEA. 579–601.
[35]  Feldmann U (1994) Some quality control parameters used in the rearing of tsetse flies. In: Ochieng’-Odero JPR editor. Techniques of insect rearing for the development of integrated pest and vector management strategies. Nairobi: ICIPE Science Press. pp.13–29.
[36]  Feldmann U, Luger D, Barnor H, Dengwat L, Ajagbonna B et al.. (1992) Tsetse fly mass rearing: Colony management, deployment of sterile flies, related research and development. Tsetse control, diagnosis and chemotherapy using nuclear techniques. Proceedings of a seminar jointly organized by the International Atomic Energy Agency and the Food and Agriculture Organization of the United Nations and held in Muguga, Kenya, 11–15 February 1991. Vienna, Austria: IAEA. pp.167–180.
[37]  Gooding RH, Feldmann U, Robinson AS (1997) Care and maintenance of tsetse colonies. In: Crampton JM, Beard CB, Louis C editors. The molecular biology of insect disease vectors: a methods manual. London, UK: Chapman & Hall Ltd. pp.41–55.
[38]  Abd-Alla A, Cousserans F, Parker A, Bergoin M, Chiraz J, et al. (2009) Quantitative PCR analysis of the salivary gland hypertrophy virus (GpSGHV) in a laboratory colony of Glossina pallidipes. Virus Res 139: 48–53 doi:10.1016/j.virusres.2008.10.006.
[39]  Sokal RR, Rohlf FJ (1981) Biometry. New York: Freeman and company. 1+859 p.
[40]  Baier T, Neuwirth E (2007) COM :: R. Computational Statistics 22: 91–108. DOI 10.1007/s00180-007-0023-6.
[41]  R Development Core Team (2010) R: A language and environment for statistical computing. http://www R-project org Available: Accessed 2010 Mar 3.
[42]  Jordan AM, Curtis CF (1968) Productivity of Glossina austeni Newst. maintained on lop-eared rabbits. Bull Entomol Res 58: 399–410.


comments powered by Disqus

Contact Us


微信:OALib Journal