全部 标题 作者
关键词 摘要

PLOS ONE  2013 

Expression Profile of microRNAs Regulating Proliferation and Differentiation in Mouse Adult Cardiac Stem Cells

DOI: 10.1371/journal.pone.0063041

Full-Text   Cite this paper   Add to My Lib

Abstract:

The identification of cardiac cells with stem cell properties changed the paradigm of the heart as a post mitotic organ. These cells proliferate and differentiate into cardiomyocytes, endothelial and vascular smooth muscle cells, providing for cardiac cell homeostasis and regeneration. microRNAs are master switches controlling proliferation and differentiation, in particular regulating stem cell biology and cardiac development. Modulation of microRNAs -regulated gene expression networks holds the potential to control cell fate and proliferation, with predictable biotechnologic and therapeutic applications. To obtain insights into the regulatory networks active in cardiac stem cells, we characterized the expression profile of 95 microRNAs with reported functions in stem cell and tissue differentiation in mouse cardiac stem cells, and compared it to that of mouse embryonic heart and mesenchymal stem cells. The most highly expressed microRNAs identified in cardiac stem cells are known to target key genes involved in the control of cell proliferation and adhesion, vascular function and cardiomyocyte differentiation. We report a subset of differentially expressed microRNAs that are proposed to act as regulators of differentiation and proliferation of adult cardiac stem cells, providing novel insights into active gene expression networks regulating their biological properties.

References

[1]  Beltrami AP, Urbanek K, Kajstura J, Yan SM, Finato N, et al. (2001) Evidence that human cardiac myocytes divide after myocardial infarction. N Engl J Med 344: 1750–1757 doi:10.1056/NEJM200106073442303.
[2]  Anversa P, Kajstura J, Leri A, Bolli R (2006) Life and death of cardiac stem cells: a paradigm shift in cardiac biology. Circulation 113: 1451–1463 doi:10.1161/CIRCULATIONAHA.105.595181.
[3]  Sturzu AC, Wu SM (2011) Developmental and regenerative biology of multipotent cardiovascular progenitor cells. Circ Res 108: 353–364 doi:10.1161/CIRCRESAHA.110.227066.
[4]  Olson EN (2006) Gene regulatory networks in the evolution and development of the heart. Science 313: 1922–1927 doi:10.1126/science.1132292.
[5]  Finnerty JR, Wang W-X, Hébert SS, Wilfred BR, Mao G, et al. (2010) The miR-15/107 group of microRNA genes: evolutionary biology, cellular functions, and roles in human diseases. J Mol Biol 402: 491–509 doi:10.1016/j.jmb.2010.07.051.
[6]  Oh H, Bradfute SB, Gallardo TD, Nakamura T, Gaussin V, et al. (2003) Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci USA 100: 12313–12318 doi:10.1073/pnas.2132126100.
[7]  Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, et al. (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114: 763–776.
[8]  Laugwitz K-L, Moretti A, Caron L, Nakano A, Chien KR (2008) Islet1 cardiovascular progenitors: a single source for heart lineages? Development 135: 193–205 doi:10.1242/dev.001883.
[9]  Chen P-S, Su J-L, Cha S-T, Tarn W-Y, Wang M-Y, et al. (2011) miR-107 promotes tumor progression by targeting the let-7 microRNA in mice and humans. J Clin Invest 121: 3442–3455 doi:10.1172/JCI45390.
[10]  Melton C, Judson RL, Blelloch R (2010) Opposing microRNA families regulate self-renewal in mouse embryonic stem cells. Nature: 1–8. doi:10.1038/nature08725.
[11]  Ivey KN, Srivastava D (2010) MicroRNAs as regulators of differentiation and cell fate decisions. Cell Stem Cell 7: 36–41 doi:10.1016/j.stem.2010.06.012.
[12]  Porrello ER, Johnson BA, Aurora AB, Simpson E, Nam Y-J, et al. (2011) miR-15 family regulates postnatal mitotic arrest of cardiomyocytes. Circ Res 109: 670–679 doi:10.1161/CIRCRESAHA.111.248880.
[13]  Cordes KR, Srivastava D (2009) MicroRNA regulation of cardiovascular development. Circ Res 104: 724–732 doi:10.1161/CIRCRESAHA.108.192872.
[14]  van Rooij E, Sutherland LB, Qi X, Richardson JA, Hill J, et al. (2007) Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 316: 575–579 doi:10.1126/science.1139089.
[15]  Callis TE, Pandya K, Seok HY, Tang R-H, Tatsuguchi M, et al. (2009) MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J Clin Invest 119: 2772–2786 doi:10.1172/JCI36154.
[16]  Small EM, Olson EN (2011) Pervasive roles of microRNAs in cardiovascular biology. Nature 469: 336–342 doi:10.1038/nature09783.
[17]  Bushati N, Cohen SM (2007) microRNA functions. Annu Rev Cell Dev Biol 23: 175–205 doi:10.1146/annurev.cellbio.23.090506.123406.
[18]  van Rooij E, Sutherland LB, Thatcher JE, DiMaio JM, Naseem RH, et al. (2008) Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci USA 105: 13027–13032 doi:10.1073/pnas.0805038105.
[19]  Liu N, Williams AH, Kim Y, McAnally J, Bezprozvannaya S, et al. (2007) An intragenic MEF2-dependent enhancer directs muscle-specific expression of microRNAs 1 and 133. Proc Natl Acad Sci USA 104: 20844–20849 doi:10.1073/pnas.0710558105.
[20]  Flynt AS, Lai EC (2008) Biological principles of microRNA-mediated regulation: shared themes amid diversity. Nature reviews Genetics 9: 831–842 doi:10.1038/nrg2455.
[21]  Roush S, Slack FJ (2008) The let-7 family of microRNAs. Trends Cell Biol 18: 505–516 doi:10.1016/j.tcb.2008.07.007.
[22]  Liu N, Olson EN (2010) MicroRNA regulatory networks in cardiovascular development. Dev Cell 18: 510–525 doi:10.1016/j.devcel.2010.03.010.
[23]  Ivey KN, Muth A, Arnold J, King FW, Yeh R-F, et al. (2008) MicroRNA regulation of cell lineages in mouse and human embryonic stem cells. Cell Stem Cell 2: 219–229 doi:10.1016/j.stem.2008.01.016.
[24]  Sluijter JPG, van Mil A, van Vliet P, Metz CHG, Liu J, et al. (2010) MicroRNA-1 and -499 regulate differentiation and proliferation in human-derived cardiomyocyte progenitor cells. Arterioscler Thromb Vasc Biol 30: 859–868 doi:10.1161/ATVBAHA.109.197434.
[25]  Marguerat S, Schmidt A, Codlin S, Chen W, Aebersold R, et al. (2012) Quantitative analysis of fission yeast transcriptomes and proteomes in proliferating and quiescent cells. Cell 151: 671–683 doi:10.1016/j.cell.2012.09.019.
[26]  Lal A, Navarro F, Maher CA, Maliszewski LE, Yan N, et al. (2009) miR-24 Inhibits cell proliferation by targeting E2F2, MYC, and other cell-cycle genes via binding to “seedless” 3′UTR microRNA recognition elements. Mol Cell 35: 610–625 doi:10.1016/j.molcel.2009.08.020.
[27]  Mendell JT (2008) miRiad roles for the miR-17–92 cluster in development and disease. Cell 133: 217–222 doi:10.1016/j.cell.2008.04.001.
[28]  Wang J, Greene SB, Bonilla-Claudio M, Tao Y, Zhang J, et al. (2010) Bmp signaling regulates myocardial differentiation from cardiac progenitors through a MicroRNA-mediated mechanism. Dev Cell 19: 903–912 doi:10.1016/j.devcel.2010.10.022.
[29]  Nicoli S, Standley C, Walker P, Hurlstone A, Fogarty KE, et al. (2010) MicroRNA-mediated integration of haemodynamics and Vegf signalling during angiogenesis. Nature 464: 1196–1200 doi:10.1038/nature08889.
[30]  Ventura A, Young AG, Winslow MM, Lintault L, Meissner A, et al. (2008) Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell 132: 875–886 doi:10.1016/j.cell.2008.02.019.
[31]  Anand S, Majeti BK, Acevedo LM, Murphy EA, Mukthavaram R, et al. (2010) MicroRNA-132-mediated loss of p120RasGAP activates the endothelium to facilitate pathological angiogenesis. Nat Med 16: 909–914 doi:10.1038/nm.2186.
[32]  Bearzi C, Rota M, Hosoda T, Tillmanns J, Nascimbene A, et al. (2007) Human cardiac stem cells. Proc Natl Acad Sci USA 104: 14068–14073 doi:10.1073/pnas.0706760104.
[33]  Carrillo ED, Escobar Y, González G, Hernández A, Galindo JM, et al. (2011) Posttranscriptional regulation of the β2-subunit of cardiac L-type Ca2+ channels by MicroRNAs during long-term exposure to isoproterenol in rats. J Cardiovasc Pharmacol 58: 470–478 doi:10.1097/FJC.0b013e31822a789b.
[34]  Chen C-Z (2004) MicroRNAs Modulate Hematopoietic Lineage Differentiation. Science 303: 83–86 doi:10.1126/science.1091903.
[35]  Brachvogel B, Moch H, Pausch F, Schl?tzer-Schrehardt U, Hofmann C, et al. (2005) Perivascular cells expressing annexin A5 define a novel mesenchymal stem cell-like population with the capacity to differentiate into multiple mesenchymal lineages. Development 132: 2657–2668 doi:10.1242/dev.01846.
[36]  Katare R, Riu F, Mitchell K, Gubernator M, Campagnolo P, et al. (2011) Transplantation of human pericyte progenitor cells improves the repair of infarcted heart through activation of an angiogenic program involving micro-RNA-132. Circ Res 109: 894–906 doi:10.1161/CIRCRESAHA.111.251546.
[37]  Tang X-L, Rokosh DG, Guo Y, Bolli R (2010) Cardiac progenitor cells and bone marrow-derived very small embryonic-like stem cells for cardiac repair after myocardial infarction. Circ J 74: 390–404.
[38]  Wang K-C, Garmire LX, Young A, Nguyen P, Trinh A, et al. (2010) Role of microRNA-23b in flow-regulation of Rb phosphorylation and endothelial cell growth. Proc Natl Acad Sci USA 107: 3234–3239 doi:10.1073/pnas.0914825107.
[39]  Small EM, Sutherland LB, Rajagopalan KN, Wang S, Olson EN (2010) MicroRNA-218 regulates vascular patterning by modulation of Slit-Robo signaling. Circ Res 107: 1336–1344 doi:10.1161/CIRCRESAHA.110.227926.
[40]  Fish JE, Wythe JD, Xiao T, Bruneau BG, Stainier DYR, et al. (2011) A Slit/miR-218/Robo regulatory loop is required during heart tube formation in zebrafish. Development 138: 1409–1419 doi:10.1242/dev.060046.
[41]  Chan MC, Hilyard AC, Wu C, Davis BN, Hill NS, et al. (2010) Molecular basis for antagonism between PDGF and the TGFbeta family of signalling pathways by control of miR-24 expression. EMBO J 29: 559–573 doi:10.1038/emboj.2009.370.
[42]  van Rooij E, Quiat D, Johnson BA, Sutherland LB, Qi X, et al. (2009) A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Dev Cell 17: 662–673 doi:10.1016/j.devcel.2009.10.013.
[43]  Qian L, van Laake LW, Huang Y, Liu S, Wendland MF, et al. (2011) miR-24 inhibits apoptosis and represses Bim in mouse cardiomyocytes. J Exp Med 208: 549–560 doi:10.1084/jem.20101547.
[44]  Chen C, Ridzon D, Lee C-T, Blake J, Sun Y, et al. (2007) Defining embryonic stem cell identity using differentiation-related microRNAs and their potential targets. Mamm Genome 18: 316–327 doi:10.1007/s00335-007-9032-6.
[45]  Gangaraju VK, Lin H (2009) MicroRNAs: key regulators of stem cells. Nat Rev Mol Cell Biol 10: 116–125 doi:10.1038/nrm2621.
[46]  Laugwitz K-L, Moretti A, Lam J, Gruber P, Chen Y, et al. (2005) Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature 433: 647–653 doi:10.1038/nature03215.
[47]  Garry DJ, Olson EN (2006) A common progenitor at the heart of development. Cell 127: 1101–1104 doi:10.1016/j.cell.2006.11.031.
[48]  van Rooij E, Sutherland LB, Liu N, Williams AH, McAnally J, et al. (2006) A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci USA 103: 18255–18260 doi:10.1073/pnas.0608791103.
[49]  Jentzsch C, Leierseder S, Loyer X, Flohrschütz I, Sassi Y, et al.. (2011) A phenotypic screen to identify hypertrophy-modulating microRNAs in primary cardiomyocytes. J Mol Cell Cardiol. doi:10.1016/j.yjmcc.2011.07.010.

Full-Text

comments powered by Disqus