All Title Author
Keywords Abstract

PLOS ONE  2013 

Comparative Genome Analysis and Phylogenetic Relationship of Order Liliales Insight from the Complete Plastid Genome Sequences of Two Lilies (Lilium longiflorum and Alstroemeria aurea)

DOI: 10.1371/journal.pone.0068180

Full-Text   Cite this paper   Add to My Lib

Abstract:

Monocots are one of the most diverse, successful and economically important clades of angiosperms. We attempt to analyse the complete plastid genome sequences of two lilies and their lengths were 152,793bp in Lilium longiflorum (Liliaceae) and 155,510bp in Alstroemeria aurea (Alstroemeriaceae). Phylogenetic analyses were performed for 28 taxa including major lineages of monocots using the sequences of 79 plastid genes for clarifying the phylogenetic relationship of the order Liliales. The sister relationship of Liliales and Asparagales-commelinids was improved with high resolution. Comparative analyses of inter-familial and inter-specific sequence variation were also carried out among three families of Liliaceae, Smilacaceae, and Alstroemeriaceae, and between two Lilium species of L. longflorum and L. superbum. Gene content and order were conserved in the order Liliales except infA loss in Smilax and Alstroemeria. IR boundaries were similar in IRa, however, IRb showed different extension patterns as JLB of Smilax and JSB in Alstroemeria. Ka/Ks ratio was high in matK among the pair-wise comparison of three families and the most variable genes were psaJ, ycf1, rpl32, rpl22, matK, and ccsA among the three families and rps15, rpoA, matK, and ndhF between Lilium.

References

[1]  Rivas JDL, Lozano JJ, Ortiz AR (2002) Comparative analysis of chloroplast genomes: functional annotation, genome-based phylogeny, and deduced evolutionary patterns. Genome Res 12: 567-583. doi:10.1101/gr.209402. PubMed: 11932241.
[2]  Haberle RC, Fourcade HM, Boore JL, Jansen RK (2008) Extensive rearrangements in the chloroplast genome of Trachelium caeruleum are associated with repeats and tRNA genes. J Mol Evol 66: 350-361. doi:10.1007/s00239-008-9086-4. PubMed: 18330485.
[3]  Egan AN, Schlueter J, Spooner DM (2012) Applications of next-generation sequencing in plant biology. Am J Bot 99: 175-185. doi:10.3732/ajb.1200020. PubMed: 22312116.
[4]  Maier RM, Neckermann K, Igloi GL, K?ssel H (1995) Complete sequence of the maize chloroplast genome: gene content, hotspots of divergence and fine tuning of genetic information by transcript editing. J Mol Biol 251: 614-628. doi:10.1006/jmbi.1995.0460. PubMed: 7666415.
[5]  Ogihara Y, Isono K, Kojima T, Endo A, Hanaoka M et al. (2000) Chinese spring wheat (Triticum aestivum L.) chloroplast genome: complete sequence and contig clones. Plant Mol Biol Rep 18: 243-253. doi:10.1007/BF02823995.
[6]  Ogihara Y, Isono K, Kojima T, Endo A, Hanaoka M et al. (2002) Structural features of a wheat plastome as revealed by complete sequencing of chloroplast DNA. Mol Genet Genomics 266: 740-746. doi:10.1007/s00438-001-0606-9. PubMed: 11810247.
[7]  Masood MS, Nishikawa T, Fukuoka S, Njenga PK, Tsudzuki T et al. (2004) The complete nucleotide sequence of wild rice (Oryza nivara) chloroplast genome: first genome wide comparative sequence analysis of wild and cultivated rice. Gene 340: 133-139. doi:10.1016/j.gene.2004.06.008. PubMed: 15556301.
[8]  Asano T, Tsudzuki T, Takahashi S, Shimada H (2004) Complete nucleotide sequence of the sugarcane (Saccharum officinarum) chloroplast genome: a comparative analysis of four monocot chloroplast genomes. DNA Res 11: 93-99. doi:10.1093/dnares/11.2.93. PubMed: 15449542.
[9]  Saski C, Lee S-B, Fjellheim S, Guda C, Jansen RK et al. (2007) Complete chloroplast genome sequences of Hordeum vulgare, Sorghum bicolor and Agrostis stolonifera, and comparative analyses with other grass genomes. Theor Appl Genet 115: 571-590. doi:10.1007/s00122-007-0567-4. PubMed: 17534593.
[10]  Diekmann K, Hodkinson TR, Wolfe KH, van den Bekerom R, Dix PJ et al. (2009) Complete chloroplast genome sequence of major allogamous forage species, perennial ryegrass (Lolium perenne L.). DNA Res 16: 165-176. doi:10.1093/dnares/dsp008. PubMed: 19414502.
[11]  Guisinger MM, Chumley TW, Kuehl JV, Boore JL, Jansen RK (2010) Implications of the plastid genome sequence of Typha (Typhaceae, Poales) for understanding genome evolution in Poaceae. J Mol Evol 70: 149-166. doi:10.1007/s00239-009-9317-3. PubMed: 20091301.
[12]  Givnish TJ, Ames M, McNeal JR, McKain MR, Steele PR et al. (2010) Assembling the tree of the monocotyledons: plastome sequence phylogeny and evolution of Poales. Ann Mo Bot Gard 97: 584-616. doi:10.3417/2010023.
[13]  Zhang Y-J, Ma P-F, Li D-Z (2011) High-throughput sequencing of six bamboo chloroplast genomes: phylogenetic implications for temperate woody bamboos (Poaceae: Bambusoideae). PLOS ONE 6: e20596. doi:10.1371/journal.pone.0020596. PubMed: 21655229.
[14]  Steele PR, Hertweck KL, Mayfield D, McKain MR, Leebens-Mack J et al. (2012) Quality and quantity of data recovered from massively parallel sequences: examples in Asparagales and Poaceae. Am J Bot 99: 330-348. doi:10.3732/ajb.1200032. PubMed: 22291168.
[15]  Hiratsuka J, Shimada H, Whittier R, Ishibashi T, Sakamoto M et al. (1989) The complete sequence of the rice (Oryza sativa) chloroplast genome: intermolecular recombination between distinct tRNA genes accounts for a major plastid inversion during the evolution of the cereals. Mol Gen Genet 217: 185-194. doi:10.1007/BF02464880. PubMed: 2770692.
[16]  Goremykin VV, Holland B, Hirsch-Ernst KI, Hellwig FH (2005) Analysis of Acorus calamus chloroplast genome and its phylogenetic implications. Mol Biol Evol 22: 1813-1822. doi:10.1093/molbev/msi173. PubMed: 15930156.
[17]  Chang C-C, Lin H-C, Lin I-P, Chow T-Y, Chen H-H et al. (2006) The chloroplast genome of Phalaenopsis aphrodite (Orchidaceae): analysis of evolutionary rate with that of grasses and its phylogenetic implications. Mol Biol Evol 23: 279-291. PubMed: 16207935.
[18]  Hansen DR, Dastidar SG, Cai Z, Penaflor C, Kuehl JV et al. (2007) Phylogenetic and evolutionary implications of complete chloroplast genome sequences of four early-diverging angiosperms: Buxus (Buxaceae), Chloranthus (Chloranthaceae), Dioscorea (Dioscoreaceae), and Illicium (Schisandraceae). Mol Phylogenet Evol 45: 547-563. doi:10.1016/j.ympev.2007.06.004. PubMed: 17644003.
[19]  Mardanov AV, Ravin NV, Kuznetsov BB, Samigullin TH, Antonov AS et al. (2008) Complete sequence of the duckweed (Lemna minor) chloroplast genome: structural organization and phylogenetic relationships to other angiosperms. J Mol Evol 66: 555-564. doi:10.1007/s00239-008-9091-7. PubMed: 18463914.
[20]  Wu F-H, Chan M-T, Liao D-C, Hsu C-T, Lee Y-W et al. (2010) Complete chloroplast genome of Oncidium Gower Ramsey and evaluation of molecular markers for identification and breeding in Oncidiinae. BMC Plant Biol 10: 68. doi:10.1186/1471-2229-10-68. PubMed: 20398375.
[21]  Yang M, Zhang X, Liu G, Yin Y, Chen K et al. (2010) The complete chloroplast genome sequence of date palm (Phoenix dactylifera L.). PLOS ONE 5: e12762. doi:10.1371/journal.pone.0012762. PubMed: 20856810.
[22]  Jansen RK, Cai Z, Raubeson LA, Daniell H, dePamphilis CW et al. (2007) Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. Proc Natl Acad Sci U S A 104: 19369-19374. doi:10.1073/pnas.0709121104. PubMed: 18048330.
[23]  Chase MW (2004) Monocot relationships: an overview. Am J Bot 91: 1645-1655. doi:10.3732/ajb.91.10.1645. PubMed: 21652314.
[24]  APG (Angiosperm Phylogeny Group) II (2003) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants. Bot J Linn Soc 141:399–436.
[25]  APG (Angiosperm Phylogeny Group) III (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG Bot III. J Linn Soc 161:105-121.
[26]  Chase MW, Fay MF, Devey DS, Maurin O, R?nsted N et al. (2006) Multigene analyses of monocot relationships: A summary. In: T. ColumbusEA FriarJM PorterLM PrinceMG Simpson. Monocots: comparative biology and evolution. Claremont: Rancho Santa Ana Botanic Garden. pp. 63–75.
[27]  Givnish TJ, Pires JC, Graham SW, McPherson MA, Prince LM et al. (2006) Phylogenetic relationships of monocots based on the highly informative plastid gene ndhF: evidence for widespread concerted convergence. Aliso 22: 28-51.
[28]  Moore MJ, Hassan N, Gitzendanner MA, Bruenn RA, Croley M et al. (2011) Phylogenetic analysis of the plastid inverted repeat for 244 species: insights into deeper-level angiosperm relationships from a long, slowly evolving sequence region. Int J Plant Sci 172: 541-558. doi:10.1086/658923.
[29]  Liu J, Di Z-C, Zhao Y-P, Fu C-X, Xiang Q-Y (2012) Complete coDNA genome sequence of Smilax china and phylogenetic placement of Liliales-Influences of gene partitions and taxon sampling. Mol Phylogenet Evol 64: 545-562. doi:10.1016/j.ympev.2012.05.010. PubMed: 22643288.
[30]  Kim JS, Hong J-K, Chase MW, Fay MF, Kim J-H (2013) Familial relationships of the monocot order Liliales based on a molecular phylogenetic analysis using four plastid loci, matK rbcL, atpB and atpF-H. Bot J Linn Soc 172: 5-21.
[31]  Jansen RK, Raubeson LA, Boore JL, dePamphilis CW, Chumley TW et al. (2005) Methods for obtaining and analyzing whole chloroplast genome sequences. Methods Enzymol 395: 348-384. doi:10.1016/S0076-6879(05)95020-9. PubMed: 15865976.
[32]  Diekmann K, Hodkinson TR, Fricke E, Barth S (2008) An Optimized Chloroplast DNA Extraction Protocol for Grasses (Poaceae) Proves Suitable for Whole Plastid Genome Sequencing and SNP Detection. PLOS ONE 3: e2813. doi:10.1371/journal.pone.0002813. PubMed: 18665252.
[33]  Seigneurin-Berny D, Salvi D, Joyard J, Rolland N (2008) Purification of intact chloroplasts from Arabidopsis and spinach leaves by isopycnic centrifugation. C. Prot 3. Cell Biol Unit. p. 30.
[34]  Wyman SK, Jansen RK, Boore JL (2004) Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20: 3252-3255. doi:10.1093/bioinformatics/bth352. PubMed: 15180927.
[35]  Schattner P, Brooks AN, Lowe TM (2005) The tRNAscan-SE, snoscan and snoGPS Web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res 33: W686-W689. doi:10.1093/nar/gki366. PubMed: 15980563.
[36]  Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity.?BMC Bioinformatics 5: 1-19. doi:10.1186/1471-2105-5-1. PubMed: 14706121.
[37]  Drummond AJ, Ashton B, Buxton S, Cheung M, Cooper A et al. (2010). Geneious Version 5: 1 Available: http://www.geneious.com.
[38]  Posada D (2008) jModelTest: Phylogenetic model averaging. Mol Biol Evol 25: 1253-1256. doi:10.1093/molbev/msn083. PubMed: 18397919.
[39]  Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML web-servers. Syst Biol 75: 758-771.
[40]  Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574. doi:10.1093/bioinformatics/btg180. PubMed: 12912839.
[41]  Swofford DL (2002) PAUP*: Phylogenetic analysis using parsimony (* and other methods). MA: Sinauer Associates, Sunderland.
[42]  Kim D-K, Kim JS, Kim J-H (2012) The phylogenetic relationships of Asparagales in Korea based on five plastid DNA regions. J Plant Biol 55: 325-345. doi:10.1007/s12374-011-0016-4.
[43]  Felsenstein J (1985) Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783–791. doi:10.2307/2408678.
[44]  Schwartz S, Zhang Z, Frazer KA, Smit A, Riemer C et al. (2000) PipMaker-A Web server for aligning two genomic DNA sequences. Genome Res 10: 577-586. doi:10.1101/gr.10.4.577. PubMed: 10779500.
[45]  Librado P, Rozas J (2009) DnaSP v5: A software for comprehensive analysis of DNA polymorphism data.?Bioinformatics?25:?1451-1452. doi:10.1093/bioinformatics/btp187. PubMed: 19346325.
[46]  Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27: 573-580. doi:10.1093/nar/27.2.573. PubMed: 9862982.
[47]  Huotari T, Korpelainen H (2012) Complete chloroplast genome sequence of Elodea canadensis and comparative analyses with other monocot plastid genomes. Gene, 508: 96–105. doi:10.1016/j.gene.2012.07.020. PubMed: 22841789. PubMed: 22841789.
[48]  Yue F, Cui L, dePamphilis CW, Moret BME, Tang J (2008) Gene rearrangement analysis and ancestral order inference from chloroplast genomes with inverted repeat. BMC Genomics 9: S25. doi:10.1186/1471-2164-9-25. PubMed: 18366615.
[49]  Wang R-J, Cheng C-L, Chang C-C, Wu C-L, Su T-M et al. (2008) Dynamics and evolution of the inverted repeat-large single copy junctions in the chloroplast genomes of monocots. BMC Evol Biol 8: 36. doi:10.1186/1471-2148-8-36. PubMed: 18237435.
[50]  Millen RS, Olmstead RG, Adams KL, Palmer JD, Lao NT et al. (2001) Many parallel losses of infA from chloroplast DNA during angiosperm evolution with multiple independent transfers to the nucleus. Plant Cell 13: 645-658. doi:10.1105/tpc.13.3.645. PubMed: 11251102.

Full-Text

comments powered by Disqus