All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99

ViewsDownloads

Relative Articles

Evidencias morfológicas y moleculares que validan como especie a Centruroides tecomanus (Scorpiones, Buthidae) Morphological and molecular evidence supporting specific status for Centruroides tecomanus (Scorpiones, Buthidae)

Evidencias morfológicas y moleculares que validan como especie a Centruroides tecomanus (Scorpiones, Buthidae)

Balance Between Pro- and Anti-Inflammatory Cytokines in Mice Treated With Centruroides noxius Scorpion Venom

Global Transcriptome Analysis of the Scorpion Centruroides noxius: New Toxin Families and Evolutionary Insights from an Ancestral Scorpion Species

A newly described scorpion species, Leiurus abdullahbayrami (Scorpion: Buthidae), and the lethal potency and in vivo effects of its venom

Scorpion Venom and the Inflammatory Response

Transcriptome analysis of the venom gland of the scorpion Scorpiops jendeki: implication for the evolution of the scorpion venom arsenal

Substrate vibrations in the scorpion Centruroides margaritatus (Scorpiones: Buthidae) during courtship

Descripción de una especie nueva de alacrán con importancia médica del género Centruroides (Scorpiones: Buthidae) del estado de Colima, México Description of a new species of scorpion of medical importance of the genus Centruroides (Scorpiones: Buthidae) from the state of Colima, Mexico

Preparation of a potent anti-scorpion-venom-serum against the venom of red scorpion (Buthus tamalus).

More...
PLOS ONE  2013 

Mass Fingerprinting of the Venom and Transcriptome of Venom Gland of Scorpion Centruroides tecomanus

DOI: 10.1371/journal.pone.0066486

Full-Text   Cite this paper   Add to My Lib

Abstract:

Centruroides tecomanus is a Mexican scorpion endemic of the State of Colima, that causes human fatalities. This communication describes a proteome analysis obtained from milked venom and a transcriptome analysis from a cDNA library constructed from two pairs of venom glands of this scorpion. High perfomance liquid chromatography separation of soluble venom produced 80 fractions, from which at least 104 individual components were identified by mass spectrometry analysis, showing to contain molecular masses from 259 to 44,392 Da. Most of these components are within the expected molecular masses for Na+- and K+-channel specific toxic peptides, supporting the clinical findings of intoxication, when humans are stung by this scorpion. From the cDNA library 162 clones were randomly chosen, from which 130 sequences of good quality were identified and were clustered in 28 contigs containing, each, two or more expressed sequence tags (EST) and 49 singlets with only one EST. Deduced amino acid sequence analysis from 53% of the total ESTs showed that 81% (24 sequences) are similar to known toxic peptides that affect Na+-channel activity, and 19% (7 unique sequences) are similar to K+-channel especific toxins. Out of the 31 sequences, at least 8 peptides were confirmed by direct Edman degradation, using components isolated directly from the venom. The remaining 19%, 4%, 4%, 15% and 5% of the ESTs correspond respectively to proteins involved in cellular processes, antimicrobial peptides, venom components, proteins without defined function and sequences without similarity in databases. Among the cloned genes are those similar to metalloproteinases.

References

[1]  Chippaux J, Goyffon M (2008) Acta Tropica Epidemiology of scorpionism: A global appraisal. Acta Tropica 107: 71–79.
[2]  Fet V, Sissom WD, Lowe G, Braunwalder ME (2000) Catalog of the Scorpions of the World (1758–1998). New York: New York Entomological Society. 690 p.
[3]  Monroy Velasco J, Monroy Nieto JM (1960) Alacranes venenosos de México. Revista Mexicana de Ciencias Médicas y Biológicas 1 and 2: 1–19.
[4]  Hoffman CC (1931) La distribución geográfica de los “Alacranes peligrosos” en la República Mexicana. Anales del Instituto de Biología de la Universidad Nacional Autónoma de México 2: 291, 408.
[5]  Chowell G, Díaz-Due?as P, Bustos-Salda?a R, Alemán Mireles A, Fet V (2006) Epidemiological and clinical characteristics of scorpionism in Colima, Mexico (2000–2001 ). Toxicon 47: 753–758.
[6]  Possani LD, Fletcher PL, Alagón AB, Juliá J (1980) Purification and Characterization of a Mammalian Toxin From Venom Of The Mexican Scorpion, Centruroides limpidus tecomanus Hoffmann. Toxicon 18: 175–183.
[7]  Martin BM, Carbone E, Yatani A, Brown AM, Ramírez AN, et al. (1988) Amino Acid Sequence and Physiological Characterization of Toxins From The Venom Of The Scorpion Centruroides limpidus tecomanus Hoffmann. Toxicon 26: 785–794.
[8]  Ramírez A, Gurrola GB, Martin BM, Possani LD (1988) Isolation Of Several Toxins From The Venom Of The Scorpion Centruroides limpidus tecomanus Hoffmann. Toxicon 26: 773–783.
[9]  Ponce SJ, Francke OF, Cano–Camacho H, Hernandéz–Calderón E (2009) Evidencias morfológicas y moleculares que validan como especie a Centruroides tecomanus (Scorpiones, Buthidae). Revista Mexicana de Biodiversidad 80: 71–84.
[10]  SSA (2011) Anuarios de morbilidad. Avalilable http://www.dgepi.salud.gob.mx. Accessed 9/03/2013.
[11]  Possani L, Becerril B, Delepierre M, Tytgat J (1999) Scorpion toxins specific for Na+-channels. Eur J Biochem 264: 287–300.
[12]  Tytgat J, Chandy G, Garcia ML, Gutman GA, Martin-Eauclaire M, et al. (1999) A unified nomenclature for short-chain peptides isolated from scorpion venoms : α-KTx molecular subfamilies. Trends in Pharmacology Sciences 20: 444–447.
[13]  Rodríguez de la Vega RC, Possani LD (2004) Current views on scorpion toxins specific for K+ channels. Toxicon 43: 865–875.
[14]  Rodríguez de la Vega RC, Possani LD (2005) Overview of scorpion toxins specific for Na+ channels and related peptides: biodiversity, structure – function relationships and evolution. Toxicon 46: 831–844.
[15]  Gurevitz M (2012) Mapping of scorpion toxin receptor sites at voltage-gated sodium channels. Toxicon 60: 502–511.
[16]  Pedraza Escalona M, Possani L (2013) Front Biosci. Scorpion beta-toxins and voltage-gated sodium channels: interactions and effects 18: 572–587.
[17]  Rodríguez de la Vega R, Possani L (2013) Scorpion venom peptides. In: Kastin A, editor. Handbook of Biologically Active Peptides. 2nd ed: Elsevier. 423–429.
[18]  Valdivia H, Possani L (1998) Peptide toxins as probes of ryanodine receptor structure and function. Trends Cardiovasc Med 8: 111–118.
[19]  Chuang R, Jaffe H, Cribbs L, Perez-Reyes E, Swartz K (1998) Inhibition of T-type voltage-gated calcium channels by a new scorpion toxin. Nature Neuroscience 1: 668–674.
[20]  Olamendi-Portugal T GB, López-González I, Van Der Walt J, Dyason K, Ulens C, Tytgat J, Felix R, Darszon A, Possani LD (2002) Two new scorpion toxins that target voltage-gated Ca2+ and Na+ channels. Biochem Biophys Res Commun 299: 562–568.
[21]  López-González I, Olamendi-Portugal T, De la Vega-Beltrán J, Van der Walt J, Dyason K, et al. (2003) Scorpion toxins that block T-type Ca2+ channels in spermatogenic cells inhibit the sperm acrosome reaction. Biochem Biophys Res Commun 300: 408–414.
[22]  Hong SJ, Chang CC (1995) Calcium channel subtypes for the sympathetic and parasympathetic nerves of guinea-pig atria. British journal of pharmacology 116: 1577–1582.
[23]  DeBin J, Maggio J, Strichartz G (1993) Purification and characterization of chlorotoxin, a chloride channel ligand from the venom of the scorpion. Am J Physiol 264: C361–369.
[24]  Zhang J, Yarov-Yarovoy V, Scheuer T, Karbat I, Cohen L, et al. (2012) Mapping the interaction site for a β-scorpion toxin in the pore module of domain III of voltage-gated Na(+) channels. J Biol Chem 287: 30719–30728.
[25]  Kirsch GE, Skatteb?l A, Possani LD, Brown aM (1989) Modification of Na channel gating by an alpha scorpion toxin from Tityus serrulatus. The Journal of general physiology 93: 67–83.
[26]  Cestèle S, Ben Khalifa R, Pelhate M, Rochat H, Gordon D (1995) Alpha-scorpion toxins binding on rat brain and insect sodium channels reveal divergent allosteric modulations by brevetoxin and veratridine. J Biol Chem 270: 15153–15161.
[27]  Leipold E, Borges A, Heinemann SH (2012) Scorpion β-toxin interference with NaV channel voltage sensor gives rise to excitatory and depressant modes. The Journal of general physiology 139: 305–319.
[28]  Batista CF, del Pozo L, Zamudio FZ, Contreras S, Becerril B, et al. (2004) Proteomics of the venom from the Amazonian scorpion Tityus cambridgei and the role of prolines on mass spectrometry analysis of toxins. Journal of Chromatography B 803: 55–66.
[29]  Olamendi-Portugal T, Batista CVF, Restano-Cassulini R, Pando V, Villa-Hernandez O, et al. (2008) Proteomic analysis of the venom from the fish eating coral snake Micrurus surinamensis: novel toxins, their function and phylogeny. Proteomics 8: 1919–1932.
[30]  Schwartz EF, Camargos TS, Zamudio FZ, Silva LP, Bloch Jr C, et al. (2008) Toxicon Mass spectrometry analysis, amino acid sequence and biological activity of venom components from the Brazilian scorpion. Toxicon 51: 1499–1508.
[31]  Schwartz EF, Diego-Garcia E, Rodríguez de la Vega RC, Possani LD (2007) Transcriptome analysis of the venom gland of the Mexican scorpion Hadrurus gertschi (Arachnida: Scorpiones). BMC genomics 8: 119.
[32]  Kozminsky-Atias A, Bar-shalom A, Mishmar D, Zilberberg N (2008) Assembling an arsenal, the scorpion way. BMC Evolucionary Biology 8: 33.
[33]  Silva CN, Camargos TS, Maranha AQ, Schwartz EF, Silva LP, et al. (2009) Toxicon Cloning and characterization of cDNA sequences encoding for new venom peptides of the Brazilian scorpion Opisthacanthus cayaporum. Toxicon 54: 252–261.
[34]  D’Suze G, Schwartz EF, García-Gómez BI, Sevcik C, Possani LD (2009) Molecular cloning and nucleotide sequence analysis of genes from a cDNA library of the scorpion Tityus discrepans. Biochimie 91: 1010–1019.
[35]  Ma Y, Zhao R, He Y, Li S, Liu J, et al. (2009) Transcriptome analysis of the venom gland of the scorpion Scorpiops jendeki: implication for the evolution of the scorpion venom arsenal. BMC genomics 10: 290.
[36]  Ruiming Z, Yibao M, Yawen H, Zhiyong D, Yingliang W, et al. (2010) Comparative venom gland transcriptome analysis of the scorpion Lychas mucronatus reveals intraspecific toxic gene diversity and new venomous components. BMC genomics 11: 452.
[37]  Ma Y, Zhao Y, Zhao R, Zhang W, He Y, et al. (2010) Molecular diversity of toxic components from the scorpion Heterometrus petersii venom revealed by proteomic and transcriptome analysis. Proteomics 10: 2471–2485.
[38]  Morgenstern D, Rohde BH, King GF, Tzachy T, Sher D, et al. (2011) Toxicon The tale of a resting gland: Transcriptome of a replete venom gland from the scorpion Hottentotta judaicus. Toxicon 57: 695–703.
[39]  Rendón-Anaya M, Delaye L, Possani LD, Herrera-Estrella A (2012) Global transcriptome analysis of the scorpion Centruroides noxius: new toxin families and evolutionary insights from an ancestral scorpion species. Plos One 7: e43331.
[40]  Almeida DD, Scortecci KC, Kobashi LS, Lucymra FA, Medeiros SR, et al.. (2012) Profiling the resting venom gland of the scorpion Tityus stigmurus through a transcriptomic survey. BMC Genomics 13.
[41]  Diego-García E, Peigneur S, Clynen E, Marien T, Czech L, et al. (2012) Molecular diversity of the telson and venom components from Pandinus cavimanus (Scorpionidae Latreille 1802): transcriptome, venomics and function. Proteomics 12: 313–328.
[42]  Roeding F, Borner J, Kube M, Klages S, Reinhardt R, et al. (2009) A 454 sequencing approach for large scale phylogenomic analysis of the common emperor scorpion (Pandinus imperator). Mol Phylogenet Evol 53: 826–834.
[43]  Ma Y, He Y, Zhao R, Wu Y, Li W, et al. (2012) Extreme diversity of scorpion venom peptides and proteins revealed by transcriptomic analysis: implication for proteome evolution of scorpion venom arsenal. J Proteomics 75: 1563–1576.
[44]  Luna-Ramírez K, Quintero-Hernández V, Vargas-Jaimes L, Batista CV, Winkel KD, et al. (2013) Characterization of the venom from the Australian scorpion Urodacus yaschenkoi: molecular mass analysis of components, cDNA sequences and peptides with antimicrobial activity. Toxicon 63C: 44–54.
[45]  Soudani N G-CJ, Srairi-Abid N, Kaabi H, Margotat A, Torresani J, El Ayeb M (2005) Identification of second lipolysis activating protein from scorpion Buthus occitanus tunetanus. Arch Inst Pasteur Tunis 82: 39–46.
[46]  Fletcher PL, Fletcher MD, Weninger K, Anderson TE, Martin BM (2010) Vesicle-associated membrane protein (VAMP) cleavage by a new metalloprotease from the Brazilian scorpion Tityus serrulatus. The Journal of biological chemistry 285: 7405–7416.
[47]  Rodríguez de la Vega R, Schwartz E, Possani L (2010) Mining on scorpion venom biodiversity. Toxicon 56: 1155–1161.
[48]  Ponce J, Francke O. Una nueva especie de alacrán del género Centruroides Marx (1890) (escorpiones Bithidae) de la Depresión del Balsas México; 2004; Morelia, Michoacán. México. Universidad Mexicana de San Nicolás de Hidalgo.
[49]  González-Santillán E (2004) Diversidad, taxonomía y hábitat de alacranes. Artrópodos de Chamela. Mexico: Instituto de Biología UNAM.
[50]  Lazo GR TJ, Miller R, Hsia C, Rausch C, Kang Y, Anderson OD (2001) Software scripts for quality checking of high-throughput nucleic acid sequencers. Biotechniques 30: 1300–1305.
[51]  Becerril B, Vazquez A, Garcia C, Corona M, Bolivar F, et al. (1993) Cloning and characterization of cDNAs that code for Na(+)-channel-blocking toxins of the scorpion Centruroides noxius Hoffmann. Gene 128: 165–171.
[52]  Batista CVF, Román-González SA, Salas-Castillo SP, Zamudio FZ, Gómez-Lagunas F, et al. (2007) Proteomic analysis of the venom from the scorpion Tityus stigmurus: Biochemical and physiological comparison with other Tityus species. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 146: 147–157.
[53]  Zamudio F, Saavedra R, Martin BM, Gurrola-Briones G, Hérion P, et al. (1992) Amino acid sequence and immunological characterization with monoclonal antibodies of two toxins from the venom of the scorpion Centruroides noxius Hoffmann. European journal of biochemistry 204: 281–292.
[54]  Vazquez A, Tapia JV, Eliason WK, Martin BM, Lebreton F, et al. (1995) Cloning and characterization of the cDNAs encoding Na+ channel-specific toxins 1 and 2 of the scorpion Centruroides noxius Hoffmann. Toxicon 33: 1161–1170.
[55]  Dehesa-Dávila M, Ramírez AN, Zamudio FZ, Gurrola-Briones G, Liévano A, et al. (1996) Structural and functional comparison of toxins from the venom of the scorpions Centruroides infamatus infamatus, Centruroides limpidus limpidus and Centruroides noxius. Comparative biochemistry and physiology Part B, Biochemistry & molecular biology 113: 331–339.
[56]  Martin M, Garcia y Perez L, el Ayeb M, Kopeyan C, Bechis G, et al. (1987) Purification and Chemical and Biological Characterizations of Seven toxins from the Mexican scorpion, Centruroides suffusus suffusus. The Journal of Biological Chemistry 262: 4452–4459.
[57]  Pimenta AM, St?cklin R, Favreau P, Bougis PE, Martin-Eauclaire MF (2001) Moving pieces in a proteomic puzzle: mass fingerprinting of toxic fractions from the venom of Tityus serrulatus (Scorpiones, Buthidae). Rapid communications in mass spectrometry : RCM 15: 1562–1572.
[58]  Diego-García E, Batista CVF, García-Gómez BI, Lucas S, Candido DM, et al. (2005) The Brazilian scorpion Tityus costatus Karsch: genes, peptides and function. Toxicon 45: 273–283.
[59]  Quintero-Hernández V, Ortiz E, Rendón-Anaya M, Schwartz EF, Becerril B, et al. (2011) Scorpion and spider venom peptides: gene cloning and peptide expression. Toxicon 58: 644–663.
[60]  Pimenta AMC, De Marco Almeida F, de Lima ME, Martin-Eauclaire MF, Bougis PE (2003) Individual variability in Tityus serrulatus (Scorpiones, Buthidae) venom elicited by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid communications in mass spectrometry 17: 413–418.
[61]  Catterall WA, Cestèle S, Yarov-Yarovoy V, Yu FH, Konoki K, et al. (2007) Voltage-gated ion channels and gating modifier toxins. Review. Toxicon 49: 124–141.
[62]  Schiavon E, Pedraza-Escalona M, Gurrola GB, Olamendi-Portugal T, Corzo G, et al. (2012) Negative-shift activation, current reduction and resurgent currents induced by beta-toxins from Centruroides scorpions in Nav channels. Toxicon 59: 283–293.
[63]  Jover E, Bablito J, Couraud F (1984) Binding of beta-scorpion toxin: a physicochemical study. Biochemistry 23: 1147–1152.
[64]  Freire-Maia L, Campos JA, Amaral CF (1994) Approaches to the treatment of scorpion envenoming. Toxicon 32: 1009–1014.
[65]  Del Rio-Portilla F, Hernández-Marín E, Pimienta G, Coronas FV, Zamudio FZ, et al. (2004) NMR solution structure of Cn12, a novel peptide from the Mexican scorpion Centruroides noxius with a typical β-toxin sequence but with α-like physiological activity. Eur J Biochem 271: 2504–2516.
[66]  Carballar-Lejarazú R, Rodríguez MH, de la Cruz Hernández-Hernández F, Ramos-Casta?eda J, Possani LD, et al. (2008) Recombinant scorpine: a multifunctional antimicrobial peptide with activity against different pathogens. Cellular and molecular life sciences : CMLS 65: 3081–3092.
[67]  Jenssen H, Hamill P, Hancock REW (2006) Peptide antimicrobial agents. Clinical microbiology reviews 19: 491–511.
[68]  Ehret-Sabatier L, Loew D, Goyffon M, Fehlbaum P, Hoffmann JA, et al. (1996) Characterization of novel cysteine-rich antimicrobial peptides from scorpion blood. The Journal of biological chemistry 271: 29537–29544.
[69]  Gennaro R, Zanetti M, Benincasa M, Podda E, Miani M (2002) Pro-rich antimicrobial peptides from animals: structure, biological functions and mechanism of action. Current pharmaceutical design 8: 763–778.
[70]  Tan NH, Ponnudurai G (1992) Comparative study of the enzymatic, hemorrhagic, procoagulant and anticoagulant activities of some animal venoms. Comparative biochemistry and physiology Part C: Pharmacology and Toxicology 103: 299–302.
[71]  Almeida FM, Pimenta AMC, De Figueiredo SG, Santoro MM, Martin-Eauclaire MF, et al. (2002) Enzymes with gelatinolytic activity can be found in Tityus bahiensis and Tityus serrulatus venoms. Toxicon 40: 1041–1045.
[72]  Gao R, Zhang Y, Gopalakrishnakone P (2008) Purification and N-terminal sequence of a serine proteinase-like protein (BMK-CBP) from the venom of the Chinese scorpion (Buthus martensii Karsch). Toxicon 52: 348–353.

Full-Text

comments powered by Disqus