全部 标题 作者
关键词 摘要

PLOS ONE  2013 

Ecological and Genetic Differences between Cacopsylla melanoneura (Hemiptera, Psyllidae) Populations Reveal Species Host Plant Preference

DOI: 10.1371/journal.pone.0069663

Full-Text   Cite this paper   Add to My Lib

Abstract:

The psyllid Cacopsylla melanoneura is considered one of the vectors of ‘Candidatus Phytoplasma mali’, the causal agent of apple proliferation disease. In Northern Italy, overwintered C. melanoneura adults reach apple and hawthorn around the end of January. Nymph development takes place between March and the end of April. The new generation adults migrate onto conifers around mid-June and come back to the host plant species after overwintering. In this study we investigated behavioural differences, genetic differentiation and gene flow between samples of C. melanoneura collected from the two different host plants. Further analyses were performed on some samples collected from conifers. To assess the ecological differences, host-switching experiments were conducted on C. melanoneura samples collected from apple and hawthorn. Furthermore, the genetic structure of the samples was studied by genotyping microsatellite markers. The examined C. melanoneura samples performed better on their native host plant species. This was verified in terms of oviposition and development of the offspring. Data resulting from microsatellite analysis indicated a low, but statistically significant difference between collected-from-apple and hawthorn samples. In conclusion, both ecological and genetic results indicate a differentiation between C. melanoneura samples associated with the two host plants.

References

[1]  Seemüller E, Schneider B (2004) ‘Candidatus Phytoplasma mali’, ‘Candidatus Phytoplasma pyri’ and ‘Candidatus Phytoplasma prunorum’, the causal agents of apple proliferation, pear decline and European stone fruit yellows, respectively. Int J Syst Evol Microbiol 54: 1217–1226.
[2]  EPPO/CABI (1996) Apple proliferation phytoplasma. In: Quarantine Pests for Europe, 2nd edn. Wallingford: CAB International. 959–962.
[3]  Tedeschi R, Bosco D, Alma A (2002) Population dynamics of Cacopsylla melanoneura (Homoptera: Psyllidae), a vector of apple proliferation phytoplasma in Northwestern Italy. J Econ Entomol 95: 544–551.
[4]  Mayer CJ, Jarausch B, Jarausch W, Jelkmann W, Vilcinskas A, et al. (2009) Cacopsylla melanoneura has no relevance as vector of apple proliferation in Germany. Phytopathology 99: 729–738.
[5]  Mattedi L, Forno F, Varner M (2007) Scopazzi del melo. Conoscenze ed osservazioni di campo. Bolzano: Arti Grafiche La Commerciale-Borgogno.
[6]  Tedeschi R, Baldessari M, Mazzoni V, Trona F, Angeli G (2012) Population dynamics of Cacopsylla melanoneura (Hemiptera: Psyllidae) in Northeast Italy and its role in apple proliferation epidemiology in apple orchards. J Econ Entomol 105(2): 322–328.
[7]  Conci C, Rapisarda C, Tamanini L (1992) Annotated catalogue of the Italian Psylloidea. First part (Insecta Homoptera). Atti Accademia Roveretana degli Agiati. Ser. VII, vol. II, B: 33–135.
[8]  Ossiannilsson F (1992) The Psylloidea (Homoptera) of Fennoscandia and Denmark, vol. 26. Fauna Entomologica Scandinavica. Leiden: ed. Brill EJ.
[9]  Pizzinat A, Tedeschi R, Alma A (2011) Cacopsylla melanoneura (Foerster): aestivation and overwintering habitats in Northwest Italy. Bull Insectol 64: 135–136.
[10]  Seemüller E (2002) Apple proliferation: etiology, epidemiology and detection. In: ATTI Giornate Fitopatologiche 1: 3–6.
[11]  Tedeschi R, Bertignolo L, Alma A (2005) Role of the hawthorn psyllid fauna in relation to the apple proliferation disease. In: Workshop Proceedings of the 3rd National Meeting on Phytoplasma Disease. Petria 15: 47–49.
[12]  Tedeschi R, Lauterer P, Brusetti L, Tota F, Alma A (2009) Composition, abundance and phytoplasma infection in the hawthorn psyllid fauna of Northwestern Italy. Eur J Plant Pathol 123: 301–310.
[13]  Miller NJ, Birley AJ, Overall ADJ, Tatchell GM (2003) Population genetic structure of the lettuce root aphid, Pemphigus bursarius (L.), in relation to geographic distance, gene flow and host plant usage. Heredity 91: 217–223.
[14]  Dorn S, Schumacher P, Abivardi C, Meyh?fer R (1999) Global and regional pest insects and their antagonists in orchards: spatial dynamics. Agr Ecosyst Environ 73: 111–118.
[15]  Malagnini V, Pedrazzoli F, Forno F, Komjanc M, Ioriatti C (2007) Characterization of microsatellite loci in Cacopsylla melanoneura F?ster (Homoptera: Psyllidae). Mol Ecol Notes 7: 495–497.
[16]  Tedeschi R, Nardi F (2010) DNA-based discrimination and frequency of phytoplasma infection in the two hawthorn-feeding species, Cacopsylla melanoneura and Cacopsylla affinis, in Northwestern Italy. B Entomol Res 100(6): 741–747.
[17]  Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12: 13–15.
[18]  Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco culture. Physiol Plant 15: 473–497.
[19]  SAS Institute (1999) SAS/STAT User’s Guide, version 8th ed. SAS Institute, Cary, NC.
[20]  Allison PD (1995) Survival Analysis Using the SAS System: a Practical Guide, 2nd ed. Cary: SAS Institute.
[21]  Amos W, Hoffman JI, Frodsham A, Zhang L, Best S, et al. (2007) Automated binning of microsatellite alleles: problems and solutions. Mol Ecol Notes 7: 10–14.
[22]  Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4: 535–538.
[23]  Chapuis MP, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24: 621–631.
[24]  Goudet J (1995) FSTAT (ver. 1.2): a computer program to calculate F-statistics. J Hered 86: 485–486.
[25]  Belkhir K, Borsa P, Raufaste N, Bonhomme F (2004) GENETIX v. 4.05: logiciel sous WindowsTM pour la génétique des populations. Laboratoire Génome, Populations, Interactions CNRS UMR 5171, Université de Montpellier II, Montpellier, France.
[26]  Raymond M, Rousset F (1995) GENEPOP (version 1.2), population genetics software for exact tests and ecumenicism. J Hered 86: 248–249.
[27]  Bonferroni CE (1936) Teoria statistica delle classi e calcolo delle probabilità. Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commerciali di Firenze 8: 3–62.
[28]  Miller JA, Shanks AL (2004) Evidence for limited larval dispersal in black rock fish (Sebastes melanops): implication for population structure and marine-reverse design. Can J Fish Aquat Sci 61: 1723–1735.
[29]  Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics 139: 457–462.
[30]  Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10: 564–567.
[31]  Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425.
[32]  Tamura K, Peterson D, Peterson N, Stecher G, Nei M, et al. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739.
[33]  Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155: 945–959.
[34]  Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14: 2611–2620.
[35]  Earl DA (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4: 359–361.
[36]  Guldemond JA (1990a) Choice of host plant as a factor in reproductive isolation of the aphid genus Cryptomyzus.. Ecol Entomol 15: 43–51.
[37]  Guldemond JA (1990b) Evolutionary genetics of the aphid Cryptomyzus, with a preliminary analysis of host plant preference, reproductive performance and host-alternation. Entomol Exp Appl 57: 65–76.
[38]  Craig TP, Itami JK, Horner JD, Abrahamson WG (1993) Behavioral evidence for host-race formation in Eurosta solidaginis. Evolution 47: 1696–1710.
[39]  Feder JL, Opp SB, Wlazlo B, Reynolds K, Go W, et al. (1994) Host fidelity is an effective premating barrier between sympatric races of the apple maggot fly. Proc Natl Acad Sci USA 91: 7990–7994.
[40]  Filchak KE, Roethele JB, Feder JL (2000) Natural selection and sympatric divergence in the apple maggot Rhagoletis pomonella. Nature 407: 739–742.
[41]  Via S (2001) Sympatric speciation in animals: the ugly duckling grows up. Trends Ecol Evol 16: 381–390.
[42]  Dres M, Mallet J (2002) Host races in plant-feeding insects and their importance in sympatric speciation. Philos Trans R Soc Lond B 357: 471–492.
[43]  Linn CE Jr, Yee WL, Sim SB, Cha DH, Powell THQ, et al. (2012) Behavioral evidence for fruit odor discrimination and sympatric host races of Rhagoletis pomonella flies in the Western United States. Evolution 66–11: 3632–3641.
[44]  Lauterer P (1999) Results of investigations on Hemiptera in Moravia, made by the Moravian Museum (Psylloidea 2). Acta Musei Moraviae, Scientiae Biologicae (Brno) 84: 71–151.
[45]  Lazarev MA (1972) Psylla melanoneura Frst. taurica forma nov. (Homoptera: Psyllidae). An apple tree pest in the Crimea. Proceedings of the All-Union V. I. Lenin Academy of Agricultural Sciences, The State Nikita Botanical Gardens, Yalta, Ukraine 61: 101–122.
[46]  Lazarev MA (1974b) The ‘Crimean Apple Sucker’ Psylla melanoneura Frst. Forma taurica, nov. (Homoptera, Psylloidea). Nikita State Botanical Gardens, Ukraine. 23–26.
[47]  Lazarev MA (1974a) Leaf-bugs (Homoptera: Psyllidae) of the apple and pear in the orchards of the Crimea. (Morphology, biology, control). Published degree dissertation, Academy of Sciences of the Moldavian SSR, Kishinyov [in Russian].
[48]  Gegechkori AM, Loginova MM (1990) Psyllids (Homoptera, Psylloidea) of the USSR (an Annotated List). Metsniereba, Tbilisi, Georgia [in Russian].
[49]  Malagnini V, Cainelli C, Pedrazzoli F, Ioriatti C (2006) Population diversity within Cacopsylla melanoneura (F?rster) based on ecological and molecular studies (Abstract). In: Proceedings of VIII European Congress of Entomology, Izmir, Turkey.
[50]  Mayer CJ, Vilcinskas A, Gross J (2011) Chemically mediated multitrophic interactions in plant-insect vector-phytoplasma system compared with a partially nonvector species. Agric Forest Entomol 13: 25–35.
[51]  Sauvion N, Lachenaud O, Genson G, Rasplus JY, Labonne G (2007) Are there several biotypes of Cacopsylla pruni? Bull Insectol 60(2): 185–186.
[52]  Sauvion N, Lachenaud O, Mondor-Genson G, Easplus JY, Labonne G (2009) Nine polymorphic microsatellite loci from the pysillid Cacopsylla pruni (Scopoli), the vector of European stone fruit yellows. Mol Ecol Res 9(4): 1196–1199.
[53]  Sun J-R, Li Y, Yan S, Zhang Q-W, Xu H-L (2011) Microsatellite marker analysis of genetic diversities of Cacopsylla chinensis (Yang et Li) (Hemiptera: Psyllidae) population in China. Acta Entomol Sin 54(7): 820–827.
[54]  Wahlund S (1928) Zusammensetzung von Population und Korrelationserscheinung vom Standpunkt der Vererbungslehre aus betrachtet. Hereditas 11: 65–106.
[55]  Clark LR (1962) The general biology of Cardiaspina albitextura (Psyllidae) and its abundance in relation to weather and parasitism. Aust J Zool 10: 537–586.
[56]  Hodkinson ID (1974) The biology of the Psylloidea (Homoptera): a review. Bull Entomol Res 64: 325–339.
[57]  Hodkinson ID (2009) Life cycle variation and adaptation in jumping plant lice (Insecta: Hemiptera: Psylloidea): a global synthesis. J Nat Hist 43: 65–179.
[58]  Conci C, Rapisarda C, Tamanini L (1995) Annotated catalogue of the Italian Psylloidea. Second part (Insecta Homoptera) - Atti Accademia Roveretana degli Agiati, ser. VII, vol. V, B: 5–207.
[59]  Tedeschi R, Alma A (2004) Transmission of apple proliferation phytoplasma by Cacopsylla melanoneura (Homoptera: Psyllidae). J Econ Entomol 97(1): 8–13.

Full-Text

comments powered by Disqus