All Title Author
Keywords Abstract

PLOS ONE  2013 

Fast Growth May Impair Regeneration Capacity in the Branching Coral Acropora muricata

DOI: 10.1371/journal.pone.0072618

Full-Text   Cite this paper   Add to My Lib


Regeneration of artificially induced lesions was monitored in nubbins of the branching coral Acropora muricata at two reef-flat sites representing contrasting environments at Réunion Island (21°07′S, 55°32′E). Growth of these injured nubbins was examined in parallel, and compared to controls. Biochemical compositions of the holobiont and the zooxanthellae density were determined at the onset of the experiment, and the photosynthetic efficiency (Fv/Fm) of zooxanthellae was monitored during the experiment. Acropora muricata rapidly regenerated small lesions, but regeneration rates significantly differed between sites. At the sheltered site characterized by high temperatures, temperature variations, and irradiance levels, regeneration took 192 days on average. At the exposed site, characterized by steadier temperatures and lower irradiation, nubbins demonstrated fast lesion repair (81 days), slower growth, lower zooxanthellae density, chlorophyll a concentration and lipid content than at the former site. A trade-off between growth and regeneration rates was evident here. High growth rates seem to impair regeneration capacity. We show that environmental conditions conducive to high zooxanthellae densities in corals are related to fast skeletal growth but also to reduced lesion regeneration rates. We hypothesize that a lowered regenerative capacity may be related to limited availability of energetic and cellular resources, consequences of coral holobionts operating at high levels of photosynthesis and associated growth.


[1]  Bythell JC, Gladfelter EH, Bythell M (1993) Chronic and catastrophic natural mortality of three common Caribbean reef corals. Coral Reefs 12: 143–152.
[2]  Connell JH (1997) Disturbance and recovery of coral assemblages. Coral reefs 16: 101–113.
[3]  Bak RPM, Steward-Van Es Y (1980) Regeneration of superficial damage in the scleractinian corals Agaricia agaricites f. purpurea and Porites astreoides. B Mar Sci 30: 883–887.
[4]  Jones RJ (2008) Coral bleaching, bleaching-induced mortality, and the adaptive significance of the bleaching response. Mar Biol 154: 65–80 doi:10.1007/s00227-007-0900-0.
[5]  Diaz-Pulido G, McCook LJ, Dove S, Berkelmans R, Roff G, et al. (2009) Doom and boom on a resilient reef: climate change, algal overgrowth and coral recovery. PLoS One 4: e5239 doi:10.1371/jourbal.pone.0005239.
[6]  Crabbe MJC (2009) Scleractinian coral population size structures and growth rates indicate coral resilience on the fringing reefs of North Jamaica. Mar Environ Res 67: 189–198 doi:10.1016/j.marenvres.2009.01.003.
[7]  Guzman HM, Burns KA, Jackson JBC (1994) Injury, regeneration and growth of Caribbean reef corals after a major oil spill in Panama. Mar Ecol Prog Ser 105: 231–241.
[8]  Fisher EM, Fauth JE, Hallock P, Woodley CM (2007) Lesion regeneration rates in reef-building corals Montastraea spp. as indicators of colony condition. Mar Ecol Prog Ser 339: 61–71.
[9]  Lester RT, Bak RPM (1985) Effect of environment on regeneration of tissue lesions in the reef coral Montastrea annularis (Scleractinia). Mar Ecol Prog Ser 24: 183–185.
[10]  Oren U, Rinkevich B, Loya Y (1997) Oriented intra-colonial transport of 14C labeled materials during coral regeneration. Mar Ecol Prog Ser 161: 117–122.
[11]  Fine M, Oren U, Loya Y (2002) Bleaching effect on regeneration and resource translocation in the coral Oculina patagonica. Mar Ecol Prog Ser 234: 119–125.
[12]  Rinkevich B (1996) Do reproduction and regeneration in damaged corals compete for energy allocation? Mar Ecol Prog Ser 143: 297–302.
[13]  Brickner I, Oren U, Frank U, Loya Y (2006) Energy integration between the solitary polyps of the clonal coral Lobophyllia corymbosa. J Exp Biol 209: 1690–1695 doi:10.1242/jeb.02168.
[14]  Bak RPM (1983) Neoplasia, regeneration and growth in the reef-building coral Acropora palmata. Mar Biol 77: 221–227.
[15]  Veghel MLJ, Bak RPM (1994) Reproductive characteristics of the polymorphic Caribbean reef building coral, Montastrea annularis. III. Reproduction in damaged and regenerating colonies. Mar Ecol Prog Ser 109: 229–233.
[16]  Bak RPM, Criens SR (1981) Survival after fragmentation of colonies of Madracis mirabilis, Acropora palmata and A. cervicornis (Scleractinia) and the subsequent impact of a coral disease. Proc 4th Int Coral Reef Symp 2: 221–227.
[17]  Meesters EH, Noordeloos M, Bak RPM (1994) Damage and regeneration: links to growth in the reef-building coral Montastrea annularis. Mar Ecol Prog Ser 112: 119–128.
[18]  Meesters EH, Wesseling I, Bak RPM (1997) Coral colony tissue damage in six species of reef-building corals: partial mortality in relation with depth and surface area. J Sea Res 37: 131–144.
[19]  Oren U, Benayahu Y, Loya Y (1997) Effect of lesion size and shape on regeneration of the Red Sea coral Favia favus. Mar Ecol Prog Ser 146: 101–107.
[20]  van Woesik R (1998) Lesion healing on massive Porites spp. corals. Mar Ecol Prog Ser 164: 213–220.
[21]  Henry LA, Hart M (2005) Regeneration from injury and resource allocation in sponges and corals–a review. Int Rev Hydrobiol 90: 125–158 doi:10.1002/iroh.200410759.
[22]  Denis V, Debreuil J, de Palmas S, Richard J, Guillaume MMM, et al. (2011) Lesion regeneration capacities in populations of the massive coral Porites lutea at Réunion Island: environmental correlates. Mar Ecol Prog Ser 428: 105–117 doi:10.3354/meps09060.
[23]  Scoffin TP, Tudhope AW, Brown BE, Chansang H, Cheeney RF (1992) Patterns and possible environmental control of skeletogenesis of Porites lutea, South Thailand. Coral Reefs 11: 1–11.
[24]  Harriott (1999) Coral growth in subtropical eastern Australia. Coral Reefs 18: 281–291.
[25]  Lough JM, Barnes DJ (2000) Environmental controls on growth of the massive coral Porites. J Exp Mar Biol Ecol 254: 225–243.
[26]  Hall VR (1997) Interspecific differences in the regeneration of artificial injuries on scleractinian corals. J Exp Mar Biol Ecol 212: 9–23.
[27]  Okubo N (2008) Size-independent investment allocation to regeneration and growth of the branching coral Acropora muricata. Galaxea 10: 83–87.
[28]  Wallace C (1999) Staghorn corals of the world: a revision of the coral genus Acropora. Collingwood: CSIRO. 421 p.
[29]  Mioche D, Cuet P (1999) Métabolisme du carbone, des carbonates et des sels nutritifs en saison chaude, sur un récif frangeant soumis à une pression anthropique (?le de la Réunion, océan Indien). CR Acad Sci II a 329: 53–59.
[30]  Bruggemann H, Guillaume M, Bigot L, Chabanet P, Denis V, et al.. (2008) Mise en oeuvre de l’effet réserve: développement des protocoles et établissement de l’état initial de la Réserve Naturelle Nationale Marine de la Réunion (secteurs de la Saline–Souris Blanche et de Saint-Leu). 74 pp, Annexes 42 pp.
[31]  Naim O (2006) The structure of coral reef benthic communities at Saint-Gilles la Saline in 1987 (Réunion, Mascarene Archipelago, SW Indian Ocean). J Nat 18: 13–31.
[32]  Kohler KE, Gill SM (2006) Coral Point Count with Excel extensions (CPCe): A Visual Basic program for the determination of coral and substrate coverage using random point count methodology. Comp Geosci 32: 1259–1269 doi:10.1016/j.cageo.2005.11.009.
[33]  Bucher DJ, Harriott VJ, Roberts LG (1998) Skeletal micro-density, porosity and bulk density of acroporid corals. J Exp Mar Biol Ecol 228: 117–136.
[34]  Maxwell K, Johnson GN (2000) Chlorophyll fluorescence–a practical guide. J Exp Bot 51: 659.
[35]  LaJeunesse TC (2001) Investigating the biodiversity, ecology, and phylogeny of endosymbiotic dinoflagellates in the genus Symbiodinium using the ITS region: in search of a “species” level marker. J Phycol 37: 866–880 doi:10.1046/j.1529-8817.2001.01031.x.
[36]  LaJeunesse TC (2002) Diversity and community structure of symbiotic dinoflagellates from Caribbean coral reefs. Mar Biol 141: 387–400.
[37]  Johannes RE, Wiebe WJ (1970) Method for determination of coral tissue biomass and composition. Limnol Oceanogr 15: 822–824.
[38]  Jeffrey SW, Humphrey GF (1975) New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pfl 167: 1–194.
[39]  Markwell MAK, Haas SM, Bieber LL, Tolbert NE (1978) A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem 87: 206–210.
[40]  Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265–275.
[41]  Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Phys 37: 911–917.
[42]  Chauvin A, Denis V, Cuet P (2011) Is the response of coral calcification to seawater calcification related to nutrient loading? Coral Reefs 30: 911–923 doi: 10.1007/s00338-011-0786-7.
[43]  Muscatine L, Cernichiari E (1969) Assimilation of photosynthetic products of zooxanthellae by a reef coral. Biol Bull 137: 506–523.
[44]  Grottoli AG, Rodrigues LJ, Palardy JE (2006) Heterotrophic plasticity and resilience in bleached corals. Nature 440: 1186–1189 doi:10.1038/nature04565.
[45]  Wooldridge SA (2009) A new conceptual model for the enhanced release of mucus in symbiotic reef corals during ?bleaching? conditions. Mar Ecol Prog Ser 396: 145–152 doi:10.3354/meps08310.
[46]  Houlbrèque F, Ferrier-Pagès C (2009) Heterotrophy in tropical scleractinian corals. Biol Rev 84: 1–17 doi:10.1111/j.1469-185X.2008.00058.x.
[47]  Middlebrook R, Anthony KR, Hoegh-Guldberg O, Dove S (2010) Heating rate and symbiont productivity are key factors determining thermal stress in the reef-building coral Acropora formosa. J Exp Biol 213: 1026–1034 doi:10.1242/jeb.031633.
[48]  Fisher P (2006) Investigating the photo-physiology of Symbiodinium sub-clades and its relationship to coral bleaching. PhD thesis, Centre for Marine Studies, University of Queensland, Brisbane, Australia.
[49]  Yang SY, Keshavmurthy S, Obura D, Sheppard CRC, Visram S, et al. (2012) Diversity and distribution of Symbiodinium associated with seven common coral species in the Chagos Archipelago, central Indian Ocean. PLoS ONE 7: e35836 doi:10.1371/journal.pone.0035836.
[50]  LaJeunesse TC, Loh WKW, van Woesik R, Hoegh-Guldberg O, Schmidt GW, et al. (2003) Low symbiont diversity in southern Great Barrier Reef corals, relative to those of the Caribbean. Limnol Oceanogr 48: 2046–2054 doi: 10.4319/lo.2003.48.5.2046.
[51]  LaJeunesse TC, Bhagooli R, Hidaka M, deVantier L, Done T, et al. (2004) Closely related Symbiodinium spp. differ in relative dominance across environmental, latitudinal and biogeographic gradients. Mar Ecol Prog Ser 284: 147–161.
[52]  Lirman D (2000) Lesion regeneration in the branching coral Acropora palmata: effects of colonization, colony size, lesion size, and lesion shape. Mar Ecol Prog Ser 197: 209–215.
[53]  Meesters EH, Bos A (1992) Gast (1992) Effects of sedimentation and lesion position on coral tissue regeneration. Proc 7th Int Coral Reef Symp 2: 671–678.
[54]  Meesters EH, Wesseling I, Bak RP (1996) Partial mortality in three species of reef-building corals and the relation with colony morphology. Bull Mar Sci 58: 838–852.
[55]  Pratchett MS, Pisapia C, Sheppard CRC (2013) Background mortality rates for recovering populations of Acropora cytherea in the Chagos Archipelago, central Indian Ocean. Mar Environ Res 86: 29–34 doi: 10.1016/j.marenvres.2013.02.007.
[56]  Kramarsky-Winter E, Loya Y (2000) Tissue regeneration in the coral Fungia granulosa: the effect of extrinsic and intrinsic factors. Mar Biol 137: 867–873.
[57]  Wooldridge SA (2010) Is the coral algae symbiosis really ‘mutually beneficial’ for the partners? BioEssays 32: 615–625 doi:10.1002/bies.200900182.
[58]  Titlyanov EA, Titlyanova TV (2008) Coral-algal competition on damaged reefs. Russ J Mar Biol 34: 199–219 doi: 10.1134/S1063074008040019.
[59]  Naim O (1993) Seasonal responses of a fringing reef community to eutrophication (Reunion Island, Western Indian Ocean). Mar Ecol Prog Ser 99: 137–151.
[60]  van Woesik R, Jordán-Garza AG (2011) Coral populations in a rapidly changing environment. J Exp Mar Biol Ecol 408: 11–20 doi:10.1016/j.jembe.2011.07.022.


comments powered by Disqus