All Title Author
Keywords Abstract

PLOS ONE  2013 

Involvement of the Wnt/β-Catenin Signaling Pathway in the Cellular and Molecular Mechanisms of Fibrosis in Endometriosis

DOI: 10.1371/journal.pone.0076808

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background During the development and progression of endometriotic lesions, excess fibrosis may lead to scarring, chronic pain, and altered tissue function. However, the cellular and molecular mechanisms of fibrosis in endometriosis remain to be clarified. Objectives The objective of the present study was to investigate whether the Wnt/β-catenin signaling pathway was involved in regulating the cellular and molecular mechanisms of fibrosis in endometriosis in vitro and to evaluate whether fibrosis could be prevented by targeting the Wnt/β-catenin pathway in a xenograft model of endometriosis in immunodeficient nude mice. Methods Seventy patients (40 with and 30 without endometriosis) with normal menstrual cycles were recruited. In vitro effects of small-molecule antagonists of the Tcf/β-catenin complex (PKF 115-584 and CGP049090) on fibrotic markers (alpha smooth muscle actin, type I collagen, connective tissue growth factor, fibronectin) and collagen gel contraction were evaluated in endometrial and endometriotic stromal cells from patients with endometriosis. In vitro effects of activation of the Wnt/β-catenin signaling pathway by treatment with recombinant Wnt3a on profibrotic responses were evaluated in endometrial stromal cells of patients without endometriosis. The effects of CGP049090 treatment on the fibrosis of endometriotic implants were evaluated in a xenograft model of endometriosis in immunodeficient nude mice. Results Treatment with PKF 115-584 and CGP049090 significantly decreased the expression of alpha smooth muscle actin, type I collagen, connective tissue growth factor and fibronectin mRNAs in both endometriotic and endometrial stromal cells with or without transforming growth factor-β1 stimulation. Both endometriotic and endometrial stromal cell-mediated contraction of collagen gels was significantly decreased by treatment with PKF 115-584 and CGP049090 as compared to that of untreated cells. The animal experiments showed that CGP049090 prevented the progression of fibrosis and reversed established fibrosis in endometriosis. Conclusion Aberrant activation of the Wnt/β-catenin pathway may be involved in mediating fibrogenesis in endometriosis.

References

[1]  Giudice LC, Kao LC (2004) Endometriosis. Lancet 364: 1789-1799. doi:10.1016/S0140-6736(04)17403-5. PubMed: 15541453.
[2]  Nisolle M, Donnez J (1997) Peritoneal endometriosis, ovarian endometriosis, and adenomyotic nodules of the rectovaginal septum are three different entities. Fertil Steril 68: 585-596. doi:10.1016/S0015-0282(97)00191-X. PubMed: 9341595.
[3]  Matsuzaki S, Canis M, Darcha C, Dechelotte P, Pouly JL et al. (1999) Fibrogenesis in peritoneal endometriosis. A semi-quantitative analysis of type-I collagen. Gynecol Obstet Invest 47: 197-199. doi:10.1159/000010094. PubMed: 10087417.
[4]  Koninckx PR, Ussia A, Adamyan L, Wattiez A, Donnez J (2012) Deep endometriosis: definition, diagnosis, and treatment. Fertil Steril 98: 564-571. doi:10.1016/j.fertnstert.2012.07.1061. PubMed: 22938769.
[5]  Matsuzaki S, Darcha C, Maleysson E, Canis M, Mage G (2010) Impaired down-regulation of E-cadherin and beta-catenin protein expression in endometrial epithelial cells in the mid-secretory endometrium of infertile patients with endometriosis. J Clin Endocrinol Metab 95: 3437-3445. doi:10.1210/jc.2009-2713. PubMed: 20410224.
[6]  Matsuzaki S, Darcha C (2012) Epithelial to mesenchymal transition-like and mesenchymal to epithelial transition-like processes might be involved in the pathogenesis of pelvic endometriosis. Hum Reprod 27: 712-721. doi:10.1093/humrep/der442. PubMed: 22215621.
[7]  Matsuzaki S, Darcha C (2013) In vitro effects of a small-molecule antagonist of the Tcf/?-catenin complex on endometrial and endometriotic cells of patients with endometriosis. PLOS ONE 28: e61690. PubMed: 23626717.
[8]  Klaus A, Birchmeier W (2008) Wnt signalling and its impact on development and cancer. Nat Rev Cancer 8: 387–398. doi:10.1038/nrc2389. PubMed: 18432252.
[9]  Clevers H (2006) Wnt/beta-catenin signaling in development and disease. Cell 127: 469–480. doi:10.1016/j.cell.2006.10.018. PubMed: 17081971.
[10]  Grigoryan T, Wend P, Klaus A, Birchmeier W (2008) Deciphering the function of canonical Wnt signals in development and disease: Conditional loss- and gain-of-function mutations of beta-catenin in mice. Genes Dev 22: 2308–2341. doi:10.1101/gad.1686208. PubMed: 18765787.
[11]  Wend P, Holland JD, Ziebold U, Birchmeier W (2010) Wnt signaling in stem and cancer stem cells. Semin Cell Dev Biol 21: 855–863. doi:10.1016/j.semcdb.2010.09.004. PubMed: 20837152.
[12]  Chilosi M, Poletti V, Zamò A, Lestani M, Montagna L et al. (2003) Aberrant Wnt/β-catenin pathway activation in idiopathic pulmonary fibrosis. Am J Pathol 162: 1495–1502. doi:10.1016/S0002-9440(10)64282-4. PubMed: 12707032.
[13]  Surendran K, Schiavi S, Hruska KA (2005) Wnt-dependent β-catenin signaling is activated after unilateral ureteral obstruction, and recombinant secreted frizzled-related protein 4 alters the progression of renal fibrosis. J Am Soc Nephrol 16: 2373–2384. doi:10.1681/ASN.2004110949. PubMed: 15944336.
[14]  K?nigshoff M, Balsara N, Pfaff EM, Kramer M, Chrobak I et al. (2008) Functional Wnt signaling is increased in idiopathic pulmonary fibrosis. PLOS ONE 3: e2142. doi:10.1371/journal.pone.0002142. PubMed: 18478089.
[15]  Henderson WR Jr, Chi EY, Ye X, Nguyen C, Tien YT et al. (2010) Inhibition of Wnt/beta-catenin/CREB binding protein (CBP) signaling reverses pulmonary fibrosis. Proc Natl Acad Sci U S A 107: 14309-14314. doi:10.1073/pnas.1001520107. PubMed: 20660310.
[16]  Akhmetshina A, Palumbo K, Dees C, Bergmann C, Venalis P et al. (2012) Activation of canonical Wnt signalling is required for TGF-β-mediated fibrosis. Nat Commun 3: 735. doi:10.1038/ncomms1734. PubMed: 22415826.
[17]  Schroeder A, Mueller O, Stocker S, Salowsky R, Leiber M et al. (2006) The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol Biol 7: 3. doi:10.1186/1471-2199-7-3. PubMed: 16448564.
[18]  Fleige S, Walf V, Huch S, Prgomet C, Sehm J et al. (2006) Comparison of relative mRNA quantification models and the impact of RNA integrity in quantitative real-time RT-PCR. Biotechnol Lett 28: 1601-1613. doi:10.1007/s10529-006-9127-2. PubMed: 16900335.
[19]  Zuo F, Kaminski N, Eugui E, Allard J, Yakhini Z et al. (2002) Gene expression analysis reveals matrilysin as a key regulator of pulmonary fibrosis in mice and humans. Proc Natl Acad Sci U S A 99: 6292–6297. doi:10.1073/pnas.092134099. PubMed: 11983918.
[20]  Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA (2002) Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 3: 349-363. doi:10.1038/nrm809. PubMed: 11988769.
[21]  Leask A, Abraham DJ (2004) TGF-beta signaling and the fibrotic response. FASEB J 18: 816–827. doi:10.1096/fj.03-1273rev. PubMed: 15117886.
[22]  Solovyan VT, Keski-Oja J (2006) Proteolytic activation of latent TGF-beta precedes caspase-3 activation and enhances apoptotic death of lung epithelial cells. J Cell Physiol 207: 445-453. doi:10.1002/jcp.20607. PubMed: 16447253.
[23]  Willis BC, Liebler JM, Luby-Phelps K, Nicholson AG, Crandall ED et al. (2005) Induction of epithelial-mesenchymal transition in alveolar epithelial cells by transforming growth factor-beta1: potential role in idiopathic pulmonary fibrosis. Am J Pathol 166: 1321-1332. doi:10.1016/S0002-9440(10)62351-6. PubMed: 15855634.
[24]  Omwandho CO, Konrad L, Halis G, Oehmke F, Tinneberg HR (2010) Role of TGF-betas in normal human endometrium and endometriosis. Hum Reprod 25: 101-109. doi:10.1093/humrep/dep382. PubMed: 19892717.
[25]  Hull ML, Johan MZ, Hodge WL, Robertson SA, Ingman WV (2012) Host-derived TGFB1 deficiency suppresses lesion development in a mouse model of endometriosis. Am J Pathol 180: 880-887. doi:10.1016/j.ajpath.2011.11.013. PubMed: 22210480.
[26]  Labbé E, Lock L, Letamendia A, Gorska AE, Gryfe R et al. (2007) Transcriptional cooperation between the transforming growth factor-beta and Wnt pathways in mammary and intestinal tumorigenesis. Cancer Res 67: 75-84. doi:10.1158/0008-5472.CAN-06-2559. PubMed: 17210685.
[27]  Sukhdeo K, Mani M, Zhang Y, Dutta J, Yasui H et al. (2007) Targeting the beta-catenin/TCF transcriptional complex in the treatment of multiple myeloma. Proc Natl Acad Sci U S A 104: 7516-7521. doi:10.1073/pnas.0610299104. PubMed: 17452641.
[28]  Anaf V, Simon P, El Nakadi I, Fayt I, Buxant F et al. (2000) Relationship between endometriotic foci and nerves in rectovaginal endometriotic nodules. Hum Reprod 15: 1744-1750. doi:10.1093/humrep/15.8.1744. PubMed: 10920097.
[29]  Ewan KB, Dale TC (2008) The potential for targeting oncogenic WNT/beta-catenin signaling in therapy. Curr Drug Targets 9: 532-547. doi:10.2174/138945008784911787. PubMed: 18673239.

Full-Text

comments powered by Disqus