All Title Author
Keywords Abstract

PLOS ONE  2013 

Ecological Consequences of Sediment on High-Energy Coral Reefs

DOI: 10.1371/journal.pone.0077737

Full-Text   Cite this paper   Add to My Lib

Abstract:

Sediments are widely accepted as a threat to coral reefs but our understanding of their ecological impacts is limited. Evidence has suggested that benthic sediments bound within the epilithic algal matrix (EAM) suppress reef fish herbivory, a key ecological process maintaining reef resilience. An experimental combination of caging and sediment addition treatments were used to investigate the effects of sediment pulses on herbivory and EAMs and to determine whether sediment addition could trigger a positive-feedback loop, leading to deep, sediment-rich turfs. A 1-week pulsed sediment addition resulted in rapid increases in algal turf length with effects comparable to those seen in herbivore exclusion cages. Contrary to the hypothesised positive-feedback mechanism, benthic sediment loads returned to natural levels within 3 weeks, however, the EAM turfs remained almost 60% longer for at least 3 months. While reduced herbivore density is widely understood to be a major threat to reefs, we show that acute disturbances to reef sediments elicit similar ecological responses in the EAM. With reefs increasingly threatened by both reductions in herbivore biomass and altered sediment fluxes, the development of longer turfs may become more common on coral reefs.

References

[1]  Nystr?m M, Folke C, Moberg F (2000) Coral reef disturbance and resilience in a human-dominated environment. Trends Ecol Evol 15: 413–417. doi:10.1016/S0169-5347(00)01948-0. PubMed: 10998519.
[2]  Norstr?m AV, Nystr?m M, Lokrantz J, Folke C (2009) Alternative states on coral reefs: beyond coral–macroalgal phase shifts. Mar Ecol Prog S 376: 295-306. doi:10.3354/meps07815.
[3]  Hoegh-Guldberg O, Mumby PJ, Hooten J, Steneck RS, Greenfield P, et al. (2007) Coral reefs under rapid climate change and ocean acidification. Science 318: 1737–1742. doi:10.1126/science.1152509. PubMed: 18079392.
[4]  Alongi DM, Mckinnon AD (2005) The cycling and fate of terrestrially-derived sediments and nutrients in the coastal zone of the Great Barrier Reef shelf. Mar Pollut Bull 51: 239–252. doi:10.1016/j.marpolbul.2004.10.033. PubMed: 15757725.
[5]  Erftemeijer PLA, Riegl B, Hoeksema BW, Todd PA (2012) Environmental impacts of dredging and other sediment disturbances on corals: a review. Mar Pollut Bull 64: 1737–1765. doi:10.1016/j.marpolbul.2012.05.008. PubMed: 22682583.
[6]  Fabricius K, De’ath G, McCook L, Turak E, Williams DM (2005) Changes in algal, coral and fish assemblages along water quality gradients on the inshore Great Barrier Reef. Mar Pollut Bull 51: 384–398. doi:10.1016/j.marpolbul.2004.10.041. PubMed: 15757737.
[7]  Scoffin TP (1992) Taphonomy of coral reefs: a review. Coral Reefs 11: 57–77. doi:10.1007/BF00357423.
[8]  Kench P (1998) A currents of removal approach for interpreting carbonate sedimentary processes. Mar Geol 145: 197–223. doi:10.1016/S0025-3227(97)00101-1.
[9]  Kench PS, Brander RW (2006) Wave processes on coral reef flats: Implications for reef geomorphology using Australian case studies. J Coast Res 22: 209–223.
[10]  Bellwood DR, Fulton CJ (2008) Sediment-mediated suppression of herbivory on coral reefs: decreasing resilience to rising sea levels and climate change? Limnol Oceanogr 53: 2695–2701. doi:10.4319/lo.2008.53.6.2695.
[11]  Goatley CHR, Bellwood DR (2012) Sediment suppresses herbivory across a coral reef depth gradient. Biol Lett 8: 1016–1018. doi:10.1098/rsbl.2012.0770. PubMed: 23097459.
[12]  Scoffin TP (1993) The geological effects of hurricanes on coral reefs and the interpretation of storm deposits. Coral Reefs 12: 203–221. doi:10.1007/BF00334480.
[13]  Purcell SW (2000) Association of epilithic algae with sediment distribution on a windward reef in the northern Great Barrier Reef, Australia. Bull Mar Sci 66: 199–214.
[14]  Birrell CL, McCook LJ, Willis BL (2005) Effects of algal turfs and sediment on coral settlement. Mar Pollut Bull 51: 408–414. doi:10.1016/j.marpolbul.2004.10.022. PubMed: 15757739.
[15]  Goatley CHR, Bellwood DR (2010) Biologically mediated sediment fluxes on coral reefs: sediment removal and off-reef transportation by the surgeonfish Ctenochaetus striatus. Mar Ecol Prog S 415: 237–245. doi:10.3354/meps08761.
[16]  Goatley CHR, Bellwood DR (2011) The roles of dimensionality, canopies and complexity in ecosystem monitoring. PLOS ONE 6: e27307. doi:10.1371/journal.pone.0027307. PubMed: 22073311.
[17]  Kramer MJ, Bellwood DR, Bellwood O (2012) Cryptofauna of the epilithic algal matrix on an inshore coral reef, Great Barrier Reef. Coral Reefs 31: 1007–1015. doi:10.1007/s00338-012-0924-x.
[18]  Kramer MJ, Bellwood DR, Bellwood O (2013) Emergent fauna from hard surfaces on the Great Barrier Reef, Australia. Mar Freshw Res 64: 687–691. doi:10.1071/MF12284.
[19]  Wilson S, Bellwood DR (1997) Cryptic dietary components of territorial damselfishes (Pomacentridae, Labroidei). Mar Ecol Prog S 153: 299–310. doi:10.3354/meps153299.
[20]  Vroom PS (2011) “Coral dominance”: a dangerous ecosystem misnomer? Mar Biol. Article ID: 164127.
[21]  Wismer S, Hoey AS, Bellwood DR (2009) Cross-shelf benthic community structure on the Great Barrier Reef: relationships between macroalgal cover and herbivore biomass. Mar Ecol Prog S 376: 45–54. doi:10.3354/meps07790.
[22]  Diaz-Pulido G, Harii S, McCook LJ, Hoegh-Guldberg O (2010) The impact of benthic algae on the settlement of a reef-building coral. Coral Reefs 29: 203–208. doi:10.1007/s00338-009-0573-x.
[23]  Chisholm JRM (2003) Primary productivity of reef-building crustose coralline algae. Limnol Oceanogr 48: 1376–1387. doi:10.4319/lo.2003.48.4.1376.
[24]  McCook LJ, Jompa J, Diaz-Pulido G (2001) Competition between corals and algae on coral reefs: a review of evidence and mechanisms. Coral Reefs 19: 400–417. doi:10.1007/s003380000129.
[25]  Diaz-Pulido G, McCook LJ, Dove S, Berkelmans R, Roff G et al. (2009) Doom and boom on a resilient reef: climate change, algal overgrowth and coral recovery. PLOS ONE 4: e5239. doi:10.1371/journal.pone.0005239. PubMed: 19384423.
[26]  Eckman JE, Duggins DO, Sewel AT (1989) Ecology of understory kelp environments. I. Effects of kelps on flow and particle transport near the bottom. J Exp Mar Biol Ecol 129: 173–187. doi:10.1016/0022-0981(89)90055-5.
[27]  Carpenter R, Williams S (1993) Effects of algal turf canopy height and microscale substratum topography on profiles of flow speed in a coral forereef environment. Limnol Oceanogr 38: 687–694. doi:10.4319/lo.1993.38.3.0687.
[28]  Nugues MM, Roberts CM (2003) Coral mortality and interaction with algae in relation to sedimentation. Coral Reefs 22: 507–516. doi:10.1007/s00338-003-0338-x.
[29]  Birrell CL, McCook LJ, Willis BL, Diaz-Pulido GA (2008) Effects of benthic algae on the replenishment of corals and the implications for the resilience of coral reefs. Oceanogr Mar Biol Annu Rev 46: 25–63.
[30]  Hixon MA, Brostoff WN (2013) Succession and herbivory: effects of differential fish grazing on Hawaiian coral-reef algae. Ecol Monogr 66: 67–90.
[31]  Burkepile DE, Hay ME (2010) Impact of herbivore identity on algal succession and coral growth on a Caribbean reef. PLOS ONE 5: e8963. doi:10.1371/journal.pone.0008963. PubMed: 20126450.
[32]  Bellwood DR, Hughes TP, Folke C, Nystr?m M (2004) Confronting the coral reef crisis. Nature 429: 827–833. doi:10.1038/nature02691. PubMed: 15215854.
[33]  Hughes TP, Rodrigues MJ, Bellwood DR, Ceccarelli D, Hoegh-Guldberg O et al. (2007) Phase shifts, herbivory, and the resilience of coral reefs to climate change. Curr Biol 17: 360–365. doi:10.1016/j.cub.2006.12.049. PubMed: 17291763.
[34]  Burkepile DE, Hay ME (2008) Herbivore species richness and feeding complementarity affect community structure and function on a coral reef. Proc Natl Acad Sci U S A 105: 16201–16206. doi:10.1073/pnas.0801946105. PubMed: 18845686.
[35]  Bonaldo RM, Bellwood DR (2011) Spatial variation in the effects of grazing on epilithic algal turfs on the Great Barrier Reef, Australia. Coral Reefs 30: 381–390. doi:10.1007/s00338-010-0704-4.
[36]  Mallela J, Roberts C, Harrod C, Goldspink CR (2007) Distributional patterns and community structure of Caribbean coral reef fishes within a river-impacted bay. J Fish Biol 70: 523–537. doi:10.1111/j.1095-8649.2007.01323.x.
[37]  Cheal AJ, Emslie MJ, MacNeil MA, Miller I, Sweatman H (2013) Spatial variation in the functional characteristics of herbivorous fish communities and the resilience of coral reefs. Ecol Appl 23: 174–188. doi:10.1890/11-2253.1. PubMed: 23495645.
[38]  Fabricius KE (2005) Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis. Mar Pollut Bull 50: 125–146. doi:10.1016/j.marpolbul.2004.11.028. PubMed: 15737355.
[39]  Purcell SW (1996) A direct method for assessing sediment load in epilithic algal communities. Mar Pollut Bull 15: 211–213.
[40]  Vergés A, Bennett S, Bellwood DR (2012) Diversity among macroalgae-consuming fishes on coral reefs: a transcontinental comparison. PLOS ONE 7: e45543. doi:10.1371/journal.pone.0045543. PubMed: 23029083.
[41]  Fox RJ, Bellwood DR (2013) Niche partitioning of feeding microhabitats produces a unique function for herbivorous rabbitfishes (Perciformes, Siganidae) on coral reefs. Coral Reefs 32: 13–23. doi:10.1007/s00338-012-0945-5.
[42]  Fulton CJ, Bellwood DR (2005) Wave-induced water motion and the functional implications for coral reef fish assemblages. Limnol Oceanogr 50: 255–264. doi:10.4319/lo.2005.50.1.0255.
[43]  Hoey AS, Bellwood DR (2008) Cross-shelf variation in the role of parrotfishes on the Great Barrier Reef. Coral Reefs 27: 37–47. doi:10.1007/s00338-007-0287-x.
[44]  Prathep A (2003) Spatial and temporal variations in sediment accumulation in an algal turf and their impact on associated fauna. Mar Biol 142: 381–390.
[45]  Entsch B, Boto KG, Sim RG, Wellington JT (1983) Phosphorus and nitrogen in coral reef sediments. Limnol Oceanogr 28: 465–476. doi:10.4319/lo.1983.28.3.0465.
[46]  Barott KL, Rodriguez-Brito B, Janou?kovec J, Marhaver KL, Smith JE et al. (2011) Microbial diversity associated with four functional groups of benthic reef algae and the reef-building coral Montastraea annularis. Environ Microbiol 13: 1192–1204. doi:10.1111/j.1462-2920.2010.02419.x. PubMed: 21272183.
[47]  Barott KL, Rodriguez-Mueller B, Youle M, Marhaver KL, Vermeij MJA et al. (2012) Microbial to reef scale interactions between the reef-building coral Montastraea annularis and benthic algae. Proc R Soc Lond B Biol Sci 279: 1655–1664. doi:10.1098/rspb.2011.2155. PubMed: 22090385.
[48]  Wilson S (2002) Nutritional value of detritus and algae in blenny territories on the Great Barrier Reef. J Exp Mar Biol Ecol 271: 155–169. doi:10.1016/S0022-0981(02)00035-7.
[49]  Madin EMP, Madin JS, Booth DJ (2011) Landscape of fear visible from space. Sci Rep 1: 14. PubMed: 22355533.
[50]  Vergés A, Vanderklift MA, Doropoulos C, Hyndes GA (2011) Spatial patterns in herbivory on a coral reef are influenced by structural complexity but not by algal traits. PLOS ONE 6: e17115. doi:10.1371/journal.pone.0017115. PubMed: 21347254.
[51]  Welsh JQ, Bellwood DR (2011) Spatial ecology of the steephead parrot fish (Chlorurus microrhinos): an evaluation using acoustic telemetry. Coral Reefs 31: 55–65.
[52]  Downie RA, Babcock RC, Thomson DP, Vanderklift MA (2013) Density of herbivorous fish and intensity of herbivory are influenced by proximity to coral reefs. Mar Ecol Prog S 482: 217–225. doi:10.3354/meps10250.
[53]  Fabricius KE, Golbuu Y, Victor S (2007) Selective mortality in coastal reef organisms from an acute sedimentation event. Coral Reefs 26: 69. doi:10.1007/s00338-006-0171-0.
[54]  Airoldi L, Balata D, Beck MW (2008) The Gray Zone: relationships between habitat loss and marine diversity and their applications in conservation. J Exp Mar Biol Ecol 366: 8–15. doi:10.1016/j.jembe.2008.07.034.
[55]  Babcock R, Mundy C (1996) Coral recruitment: consequences of settlement choice for early growth and survivorship in two scleractinians. J Exp Mar Biol Ecol 206: 179–201. doi:10.1016/S0022-0981(96)02622-6.
[56]  Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR et al. (2003) Climate change, human impacts, and the resilience of coral reefs. Science 301: 929–933. doi:10.1126/science.1085046. PubMed: 12920289.
[57]  McCulloch M, Fallon S, Wyndham T, Hendy E, Lough J et al. (2003) Coral record of increased sediment flux to the inner Great Barrier Reef since European settlement. Nature 421: 727-730. doi:10.1038/nature01361. PubMed: 12610621.
[58]  Purcell SW, Bellwood DR (2001) Spatial patterns of epilithic algal and detrital resources on a windward coral reef. Coral Reefs 20: 117–125. doi:10.1007/s003380100150.
[59]  Gagan MK, Johnson DP, Carter RM (1988) The Cyclone Winifred storm bed, central Great Barrier Reef shelf, Australia. J Sedimentary Petrol 58: 845–856.
[60]  Wolanski E, Gibbs R (1992) Resuspension, and clearing of dredge spoils after dredging, Cleveland Bay, Australia. Water Environ Res 64: 910–914. doi:10.2175/WER.64.7.9.
[61]  Esslemont G, Russell RA, Maher WA (2004) Coral record of harbour dredging: Townsville, Australia. J Mar Syst 52: 51–64. doi:10.1016/j.jmarsys.2004.01.005.
[62]  Birkeland C (2004) Ratcheting Down the Coral Reefs. BioScience 54: 1021-1027.
[63]  Devlin MJ, Brodie J (2005) Terrestrial discharge into the Great Barrier Reef Lagoon: nutrient behavior in coastal waters. Mar Pollut Bull 51: 9–22. doi:10.1016/j.marpolbul.2004.10.037. PubMed: 15757704.

Full-Text

comments powered by Disqus