All Title Author
Keywords Abstract

PLOS ONE  2013 

Evolutionary Insight into the Functional Amyloids of the Pseudomonads

DOI: 10.1371/journal.pone.0076630

Full-Text   Cite this paper   Add to My Lib

Abstract:

Functional bacterial amyloids (FuBA) are important components in many environmental biofilms where they provide structural integrity to the biofilm, mediate bacterial aggregation and may function as virulence factor by binding specifically to host cell molecules. A novel FuBA system, the Fap system, was previously characterized in the genus Pseudomonas, however, very little is known about the phylogenetic diversity of bacteria with the genetic capacity to apply this system. Studies of genomes and public metagenomes from a diverse range of habitats showed that the Fap system is restricted to only three classes in the phylum Proteobacteria, the Beta-, Gamma- and Deltaproteobacteria. The structural organization of the fap genes into a single fapABCDEF operon is well conserved with minor variations such as a frequent deletion of fapA. A high degree of variation was seen within the primary structure of the major Fap fibril monomers, FapC, whereas the minor monomers, FapB, showed less sequence variation. Comparison of phylogenetic trees based on Fap proteins and the 16S rRNA gene of the corresponding bacteria showed remarkably similar overall topology. This indicates, that horizontal gene transfer is an infrequent event in the evolution of the Fap system.

References

[1]  Dobson CM (2003) Protein folding and misfolding. Nature 426: 884–890. doi:10.1038/nature02261. PubMed: 14685248.
[2]  Gebbink MF, Claessen D, Bouma B, Dijkhuizen L, W?sten HA (2005) Amyloids--a functional coat for microorganisms. Nat Rev Microbiol 3: 333–341. doi:10.1038/nrmicro1127. PubMed: 15806095.
[3]  Nielsen PH, Dueholm MS, Thomsen TR, Nielsen JL, Otzen D (2011) Functional bacterial amyloids in biofilms. In: H-C FlemmingJ. WingenderU. Szewzyk. Biofilm highlights, Vol. 5. Springer Berlin Heidelberg. pp. 41–62.
[4]  Dueholm MS, Nielsen PH, Chapman M, Otzen D (2013) Functional amyloids in bacteria. In: DE Otzen. Amyloid fibrils and prefibrillar aggregates. Wiley-VCH Verlag GmbH & Co. KGaA. pp. 411–438.
[5]  Barnhart MM, Chapman MR (2006) Curli biogenesis and function. Annu Rev Microbiol 60: 131–147. doi:10.1146/annurev.micro.60.080805.142106. PubMed: 16704339.
[6]  Larsen P, Nielsen JL, Dueholm MS, Wetzel R, Otzen D et al. (2007) Amyloid adhesins are abundant in natural biofilms. Environ Microbiol 9: 3077–3090. doi:10.1111/j.1462-2920.2007.01418.x. PubMed: 17991035.
[7]  Larsen P, Nielsen JL, Otzen D, Nielsen PH (2008) Amyloid-like adhesins produced by floc-forming and filamentous bacteria in activated sludge. Appl Environ Microbiol 74: 1517–1526. doi:10.1128/AEM.02274-07. PubMed: 18192426.
[8]  Dueholm MS, Petersen SV, S?nderkaer M, Larsen P, Christiansen G et al. (2010) Functional amyloid in Pseudomonas. Mol Microbiol 77: 1009–1020. PubMed: 20572935.
[9]  Dueholm MS, S?ndergaard MT, Nilsson M, Christiansen G, Stensballe A et al. (2013) Expression of Fap amyloids in Pseudomonas aeruginosa, P. fluorescens, and P. putida results in aggregation and increased biofilm formation. Microbiologyopen. doi:10.1002/mbo3.81.
[10]  Palmer KL, Mashburn LM, Singh PK, Whiteley M (2005) Cystic fibrosis sputum supports growth and cues key aspects of Pseudomonas aeruginosa physiology. J Bacteriol 187: 5267–5277. doi:10.1128/JB.187.15.5267-5277.2005. PubMed: 16030221.
[11]  Kirketerp-M?ller K, Jensen P?, Fazli M, Madsen KG, Pedersen J et al. (2008) Distribution, organization, and ecology of bacteria in chronic wounds. J Clin Microbiol 46: 2717–2722. doi:10.1128/JCM.00501-08. PubMed: 18508940.
[12]  Espinosa-Urgel M, Salido A, Ramos J-L (2000) Genetic analysis of functions involved in adhesion of Pseudomonas putida to seeds. J Bacteriol 182: 2363–2369. doi:10.1128/JB.182.9.2363-2369.2000. PubMed: 10762233.
[13]  Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3: 307–319. doi:10.1038/nrmicro1129. PubMed: 15759041.
[14]  Parales RE, Ditty JL, Harwood CS (2000) Toluene-degrading bacteria are chemotactic towards the environmental pollutants benzene, toluene, and trichloroethylene. Appl Environ Microbiol 66: 4098–4104. doi:10.1128/AEM.66.9.4098-4104.2000. PubMed: 10966434.
[15]  Attaway HH, Schmidt MG (2002) Tandem biodegradation of BTEX components by two Pseudomonas sp. Curr Microbiol 45: 30–36. doi:10.1007/s00284-001-0053-1. PubMed: 12029524.
[16]  Wiehlmann L, Munder A, Adams T, Juhas M, Kolmar H et al. (2007) Functional genomics of Pseudomonas aeruginosa to identify habitat-specific determinants of pathogenicity. Int J Med Microbiol 297: 615–623. doi:10.1016/j.ijmm.2007.03.014. PubMed: 17481950.
[17]  Dueholm MS, Albertsen M, Otzen D, Nielsen PH (2012) Curli functional amyloid systems are phylogenetically widespread and display large diversity in operon and protein structure. PLOS ONE 7: e51274. doi:10.1371/journal.pone.0051274. PubMed: 23251478.
[18]  Madera M, Gough J (2002) A comparison of profile hidden markov model procedures for remote homology detection. Nucleic Acids Res 30: 4321–4328. doi:10.1093/nar/gkf544. PubMed: 12364612.
[19]  Eddy SR (2011) Accelerated profile HMM searches. PLOS Comput Biol 7: e1002195. PubMed: 22039361.
[20]  Beatson SA, das Gra?as de Luna M, Bachmann NL, Alikhan N-F, Hanks KR et al. (2011) Genome sequence of the emerging pathogen Aeromonas caviae. J Bacteriol 193: 1286–1287. doi:10.1128/JB.01337-10. PubMed: 21183677.
[21]  Woo PCY, Lau SKP, Tse H, Teng JLL, Curreem SOT et al. (2009) The complete genome and proteome of Laribacter hongkongensis reveal potential mechanisms for adaptations to different temperatures and habitats. PLOS Genet 5: e1000416. PubMed: 19283063.
[22]  LiPuma JJ (2003) Burkholderia and emerging pathogens in cystic fibrosis. Semin Respir Crit Care Med 24: 681–692. doi:10.1055/s-2004-815664. PubMed: 16088584.
[23]  Segonds C, Clavel-Batut P, Thouverez M, Grenet D, Coustumier AL et al. (2009) Microbiological and epidemiological features of clinical respiratory isolates of Burkholderia gladioli. J Clin Microbiol 47: 1510–1516. doi:10.1128/JCM.02489-08. PubMed: 19297595.
[24]  Yang C-H, Li Y-H (2011) Chromobacterium violaceum infection: A clinical review of an important but neglected infection. J Chin Med Assoc 74: 435–441. doi:10.1016/j.jcma.2011.08.013. PubMed: 22036134.
[25]  Danhorn T, Fuqua C (2007) Biofilm formation by plant-associated bacteria. Annu Rev Microbiol 61: 401–422. doi:10.1146/annurev.micro.61.080706.093316. PubMed: 17506679.
[26]  Seneviratne G, Weerasekara MLMAW, Seneviratne KACN, Zavahir JS, Kecskés ML et al. (2011) Importance of biofilm formation in plant growth promoting rhizobacterial action. In: DK Maheshwari. Plant growth and health promoting bacteria. Microbiology monographs. Springer Berlin Heidelberg. pp. 81–95.
[27]  Rudrappa T, Biedrzycki ML, Bais HP (2008) Causes and consequences of plant-associated biofilms. FEMS Microbiol Ecol 64: 153–166. doi:10.1111/j.1574-6941.2008.00465.x. PubMed: 18355294.
[28]  López D, Vlamakis H, Kolter R (2010) Biofilms. Cold Spring Harb Perspect Biol 2: a000398. doi:10.1101/cshperspect.a000398. PubMed: 20519345.
[29]  Matz C, Kjelleberg S (2005) Off the hook – how bacteria survive protozoan grazing. Trends Microbiol 13: 302–307. doi:10.1016/j.tim.2005.05.009. PubMed: 15935676.
[30]  Costerton JW (1995) Overview of microbial biofilms. J Ind Microbiol 15: 137–140. doi:10.1007/BF01569816. PubMed: 8519468.
[31]  Shankar M, Ponraj P, Illakkiam D, Rajendhran J, Gunasekaran P (2013) Inactivation of the transcriptional regulator-encoding gene sdiA enhances rice root colonization and biofilm formation in Enterobacter cloacae GS1. J Bacteriol 195: 39–45. doi:10.1128/JB.01236-12. PubMed: 23086212.
[32]  Ryan RP, Monchy S, Cardinale M, Taghavi S, Crossman L et al. (2009) The versatility and adaptation of bacteria from the genus Stenotrophomonas. Nat Rev Microbiol 7: 514–525. doi:10.1038/nrmicro2163. PubMed: 19528958.
[33]  Tank EMH, Harris DA, Desai AA, True HL (2007) Prion protein repeat expansion results in increased aggregation and reveals phenotypic variability. Mol Cell Biol 27: 5445–5455. doi:10.1128/MCB.02127-06. PubMed: 17548473.
[34]  Kalastavadi T, True HL (2008) Prion protein insertional mutations increase aggregation propensity but not fiber stability. BMC Biochem 9: 7. doi:10.1186/1471-2091-9-S1-S7. PubMed: 18366654.
[35]  Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215: 403–410. doi:10.1016/S0022-2836(05)80360-2. PubMed: 2231712.
[36]  Ludwig W, Strunk O, Westram R, Richter L, Meier H et al. (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32: 1363–1371. doi:10.1093/nar/gkh293. PubMed: 14985472.
[37]  Huson DH, Mitra S, Ruscheweyh H-J, Weber N, Schuster SC (2011) Integrative analysis of environmental sequences using MEGAN4. Genome Res 21: 1552–1560. doi:10.1101/gr.120618.111. PubMed: 21690186.

Full-Text

comments powered by Disqus