[1] | Turtle L, Griffiths MJ, Solomon T (2012) Encephalitis caused by flaviviruses. QJM 105: 219-223. doi:10.1093/qjmed/hcs013. PubMed: 22367423.
|
[2] | Teruel-López E (1991) Dengue. A review. Invest Clin 32: 201-217. PubMed: 1822723.
|
[3] | Heinz FX, Stiasny K (2012) Flaviviruses and flavivirus vaccines. Vaccine 30: 4301-4306. doi:10.1016/j.vaccine.2011.09.114. PubMed: 22682286.
|
[4] | Dong H, Ren S, Zhang B, Zhou Y, Puig-Basagoiti F et al. (2008) West Nile virus methyltransferase catalyzes two methylations of the viral RNA cap through a substrate-repositioning mechanism. J Virol 82: 4295-4307. doi:10.1128/JVI.02202-07. PubMed: 18305027.
|
[5] | Benarroch D, Egloff MP, Mulard L, Guerreiro C, Romette JL et al. (2004) A structural basis for the inhibition of the NS5 dengue virus mRNA 2'-O-methyltransferase domain by ribavirin 5'-triphosphate. J Biol Chem 279: 35638-35643. doi:10.1074/jbc.M400460200. PubMed: 15152003.
|
[6] | Bollati M, Alvarez K, Assenberg R, Baronti C, Canard B et al. (2010) Structure and functionality in flavivirus NS-proteins: perspectives for drug design. Antiviral Res 87: 125-148. doi:10.1016/j.antiviral.2009.11.009. PubMed: 19945487.
|
[7] | Dong H, Zhang B, Shi PY (2008) Flavivirus methyltransferase: a novel antiviral target. Antiviral Res 80: 1-10. doi:10.1016/j.antiviral.2008.05.003. PubMed: 18571739.
|
[8] | Lim SP, Wen D, Yap TL, Yan CK, Lescar J et al. (2008) A scintillation proximity assay for dengue virus NS5 2'-O-methyltransferase-kinetic and inhibition analyses. Antiviral Res 80: 360-369. doi:10.1016/j.antiviral.2008.08.005. PubMed: 18809436.
|
[9] | Luzhkov VB, Selisko B, Nordqvist A, Peyrane F, Decroly E et al. (2007) Virtual screening and bioassay study of novel inhibitors for dengue virus mRNA cap (nucleoside-2'O)-methyltransferase. Bioorg Med Chem 15: 7795-7802. doi:10.1016/j.bmc.2007.08.049. PubMed: 17888664.
|
[10] | Milani M, Mastrangelo E, Bollati M, Selisko B, Decroly E et al. (2009) Flaviviral methyltransferase/RNA interaction: structural basis for enzyme inhibition. Antiviral Res 83: 28-34. doi:10.1016/j.antiviral.2009.03.001. PubMed: 19501254.
|
[11] | Podvinec M, Lim SP, Schmidt T, Scarsi M, Wen D et al. (2010) Novel inhibitors of dengue virus methyltransferase: discovery by in vitro-driven virtual screening on a desktop computer grid. J Med Chem 53: 1483-1495. doi:10.1021/jm900776m. PubMed: 20108931.
|
[12] | Puig-Basagoiti F, Qing M, Dong H, Zhang B, Zou G et al. (2009) Identification and characterization of inhibitors of West Nile virus. Antiviral Res 83: 71-79. doi:10.1016/j.antiviral.2009.03.005. PubMed: 19501258.
|
[13] | Sampath A, Padmanabhan R (2009) Molecular targets for flavivirus drug discovery. Antiviral Res 81: 6-15. doi:10.1016/j.antiviral.2008.08.004. PubMed: 18796313.
|
[14] | Selisko B, Peyrane FF, Canard B, Alvarez K, Decroly E (2010) Biochemical characterization of the (nucleoside-2'O)-methyltransferase activity of dengue virus protein NS5 using purified capped RNA oligonucleotides. AC: GPPP. (p. 7Me)(n) and AC: GPPP(n). J Gen Virol 91: 112-121.
|
[15] | Lim SP, Sonntag LS, Noble C, Nilar SH, Ng RH et al. (2011) Small molecule inhibitors that selectively block dengue virus methyltransferase. J Biol Chem 286: 6233-6240. doi:10.1074/jbc.M110.179184. PubMed: 21147775.
|
[16] | Chen H, Liu L, Jones SA, Banavali N, Kass J et al. (2013) Selective inhibition of the West Nile virus methyltransferase by nucleoside analogs. Antiviral Res 97: 232-239. doi:10.1016/j.antiviral.2012.12.012. PubMed: 23267828.
|
[17] | Fauman EB, Blumenthal RM, Cheng XD (1999) Structure and evolution of AdoMet-dependent methyltransferases. In: XD ChengRM Blumenthal. S-Adenosylmethionine-dependent methyltransferase: structures and functions. Singapore: World Scientific Publishing Co. pp. 1-38.
|
[18] | Ray D, Shah A, Tilgner M, Guo Y, Zhao Y et al. (2006) West Nile virus 5'-cap structure is formed by sequential guanine N-7 and ribose 2'-O methylations by nonstructural protein 5. J Virol 80: 8362-8370. doi:10.1128/JVI.00814-06. PubMed: 16912287.
|
[19] | Zhou Y, Ray D, Zhao Y, Dong H, Ren S et al. (2007) Structure and function of flavivirus NS5 methyltransferase. J Virol 81: 3891-3903. doi:10.1128/JVI.02704-06. PubMed: 17267492.
|
[20] | Egloff MP, Benarroch D, Selisko B, Romette JL, Canard B (2002) An RNA cap (nucleoside-2'-O-)-methyltransferase in the flavivirus RNA polymerase NS5: crystal structure and functional characterization. EMBO J 21: 2757-2768. doi:10.1093/emboj/21.11.2757. PubMed: 12032088.
|
[21] | Kroschewski H, Lim SP, Butcher RE, Yap TL, Lescar J et al. (2008) Mutagenesis of the dengue virus type 2 NS5 methyltransferase domain. J Biol Chem 283: 19410-19421. doi:10.1074/jbc.M800613200. PubMed: 18469001.
|
[22] | Dong H, Chang DC, Hua MH, Lim SP, Chionh YH et al. (2012) 2'-O methylation of internal adenosine by flavivirus NS5 methyltransferase. PLOS Pathog 8: e1002642. PubMed: 22496660.
|
[23] | Dong H, Liu L, Zou G, Zhao Y, Li Z et al. (2010) Structural and functional analyses of a conserved hydrophobic pocket of flavivirus methyltransferase. J Biol Chem 285: 32586-32595. doi:10.1074/jbc.M110.129197. PubMed: 20685660.
|
[24] | Dong H, Ren S, Li H, Shi PY (2008) Separate molecules of West Nile virus methyltransferase can independently catalyze the N7 and 2'-O methylations of viral RNA cap. Virology 377: 1-6. doi:10.1016/j.virol.2008.04.026. PubMed: 18501946.
|
[25] | Bhattacharya D, Hoover S, Falk SP, Weisblum B, Vestling M et al. (2008) Phosphorylation of yellow fever virus NS5 alters methyltransferase activity. Virology 380: 276-284. doi:10.1016/j.virol.2008.07.013. PubMed: 18757072.
|
[26] | Khromykh AA, Kenney MT, Westaway EG (1998) trans-Complementation of flavivirus RNA polymerase gene NS5 by using Kunjin virus replicon-expressing BHK cells. J Virol 72: 7270-7279. PubMed: 9696822.
|
[27] | Chung KY, Dong H, Chao AT, Shi PY, Lescar J et al. (2010) Higher catalytic efficiency of N-7-methylation is responsible for processive N-7 and 2'-O methyltransferase activity in dengue virus. Virology 402: 52-60. doi:10.1016/j.virol.2010.03.011. PubMed: 20350738.
|
[28] | Dong H, Ray D, Ren S, Zhang B, Puig-Basagoiti F et al. (2007) Distinct RNA elements confer specificity to flavivirus RNA cap methylation events. J Virol 81: 4412-4421. doi:10.1128/JVI.02455-06. PubMed: 17301144.
|
[29] | Li SH, Dong H, Li XF, Xie X, Zhao H et al. (2013) Rational design of a flavivirus vaccine through abolishing viral RNA 2’ -O methylation. J Virol ( in press).
|
[30] | Liu L, Dong H, Chen H, Zhang J, Ling H et al. (2010) Flavivirus RNA cap methyltransferase: structure, function, and inhibition. Front Biol 5: 286-303. doi:10.1007/s11515-010-0660-y. PubMed: 21927615.
|
[31] | Loehrer FM, Schwab R, Angst CP, Haefeli WE, Fowler B (1997) Influence of oral S-adenosylmethionine on plasma 5-methyltetrahydrofolate, S-adenosylhomocysteine, homocysteine and methionine in healthy humans. J Pharmacol Exp Ther 282: 845-850. PubMed: 9262350.
|
[32] | Poirier LA, Wise CK, Delongchamp RR, Sinha R (2001) Blood determinations of S-adenosylmethionine, S-adenosylhomocysteine, and homocysteine: correlations with diet. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 10: 649-655.
|
[33] | Perna AF, Ingrosso D, Zappia V, Galletti P, Capasso G et al. (1993) Enzymatic methyl esterification of erythrocyte membrane proteins is impaired in chronic renal failure. Evidence for high levels of the natural inhibitor S-adenosylhomocysteine. J Clin Invest 91: 2497-2503. doi:10.1172/JCI116485. PubMed: 8514862.
|
[34] | Castro R, Rivera I, Struys EA, Jansen EE, Ravasco P et al. (2003) Increased homocysteine and S-adenosylhomocysteine concentrations and DNA hypomethylation in vascular disease. Clin Chem 49: 1292-1296. doi:10.1373/49.8.1292. PubMed: 12881445.
|
[35] | Stabler SP, Allen RH, Dolce ET, Johnson MA (2006) Elevated serum S-adenosylhomocysteine in cobalamin-deficient elderly and response to treatment. Am J Clin Nutr 84: 1422-1429. PubMed: 17158426.
|
[36] | Dall’Acqua W, Goldman ER, Lin W, Teng C, Tsuchiya D et al. (1998) A mutational analysis of binding interactions in an antigen-antibody protein-protein complex. Biochemistry 37: 7981-7991. doi:10.1021/bi980148j. PubMed: 9609690.
|
[37] | Zheng W, Ibá?ez G, Wu H, Blum G, Zeng H et al. (2012) Sinefungin derivatives as inhibitors and structure probes of protein lysine methyltransferase SETD2. J Am Chem Soc 134: 18004-18014. doi:10.1021/ja307060p. PubMed: 23043551.
|
[38] | Geiss BJ, Thompson AA, Andrews AJ, Sons RL, Gari HH et al. (2009) Analysis of flavivirus NS5 methyltransferase cap binding. J Mol Biol 385: 1643-1654. doi:10.1016/j.jmb.2008.11.058. PubMed: 19101564.
|
[39] | Brooks BR, Brooks CL 3rd, Mackerell AD Jr., Nilsson L, Petrella RJ et al. (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30: 1545-1614. doi:10.1002/jcc.21287. PubMed: 19444816.
|
[40] | Brooks JB, Kuno G, Craven RB, Alley CC, Wycoff BJ (1983) Studies of metabolic changes in cell cultures infected with four serotypes of dengue fever viruses by frequency-pulsed electron-capture gas-liquid chromatography. J Chromatogr 276: 279-288. PubMed: 6630378.
|
[41] | MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD et al. (1998) All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins. J Phys Chem 102: 3586-3616.
|
[42] | Mackerell AD Jr, Feig M, Brooks CL 3rd (2004) Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J Comput Chem 25: 1400-1415. doi:10.1002/jcc.20065. PubMed: 15185334.
|
[43] | Jorgensen WJ, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79: 926-935. doi:10.1063/1.445869.
|
[44] | BEGLOV D, Roux B (1994) Finite Representation of an Infinite Bulk System: Solvent Boundary Potential for Computer Simulations. J Chem Phys 100: 9050-9063. doi:10.1063/1.466711.
|
[45] | Wang P, Nicklaus MC, Marquez VE, Brank AS, Christman J et al. (2000) Use of Oligodeoxyribonucleotides with Conformationally Constrained Abasic Sugar Targets to Probe the Mechanism of Base Flipping by HhaI DNA (Cytosine C5)-Methyltransferase. J Am Chem Soc 122: 12422-12434. doi:10.1021/ja001989s.
|
[46] | Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S et al. (2010) CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem 31: 671-690. PubMed: 19575467.
|
[47] | Vanommeslaeghe K, MacKerell AD Jr. (2012) Automation of the CHARMM General Force Field (CGenFF) I: Bond Perception and Atom Typing. J Chem Inf Model 52: 3144-3154. doi:10.1021/ci300363c. PubMed: 23146088.
|
[48] | Vanommeslaeghe K, Raman EP, MacKerell AD Jr (2012) Automation of the CHARMM General Force Field (CGenFF) II: Assignment of Bonded Parameters and Partial Atomic Charges. J Chem Inf Model 52: 3155-3168. doi:10.1021/ci3003649. PubMed: 23145473.
|
[49] | Darden T, York D, Pedersen LG (1993) Particle mesh Ewald: An N?log(N) method for Ewald sums in large systems. J Chem Phys 98: 10089-10092. doi:10.1063/1.464397.
|
[50] | Feller S, Zhang Y, Pastor R, Brooks BR (1995) Constant pressure molecular dynamics simulation: The Langevin piston method J Chem Phys 103: 4613-4621. doi:10.1063/1.470648.
|
[51] | Kollman PA, Massova I, Reyes C, Kuhn B, Huo S et al. (2000) Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 33: 889-897. doi:10.1021/ar000033j. PubMed: 11123888.
|