[1] | Jagani Z, Song K, Kutok JL, Dewar MR, Melet A et al. (2009) Proteasome inhibition causes regression of leukemia and abrogates BCR-ABL-induced evasion of apoptosis in part through regulation of forkhead tumor suppressors. Cancer Res 69(16): 6546-6555. doi:10.1158/0008-5472.CAN-09-0605. PubMed: 19654305.
|
[2] | Jagani Z, Singh A, Khosravi-Far R (2008) FoxO tumor suppressors and BCR-ABL-induced leukemia: a matter of evasion of apoptosis. Biochim Biophys Acta 1785(1): 63-84. PubMed: 17980712.
|
[3] | W?hrle FU, Halbach S, Aumann K, Schwemmers S, Braun S et al. (2013) Gab2 signaling in chronic myeloid leukemia cells confers resistance to multiple Bcr-Abl inhibitors. Leukemia 27(1): 118-129. doi:10.1038/leu.2012.222. PubMed: 22858987.
|
[4] | Dai Y, Rahmani M, Pei XY, Dent P, Grant S (2004) Bortezomib and flavopiridol interact synergistically to induce apoptosis in chronic myeloid leukemia cells resistant to imatinib mesylate through both Bcr/Abl-dependent and -independent mechanisms. Blood 104(2): 509-518. doi:10.1182/blood-2003-12-4121. PubMed: 15039284.
|
[5] | Razzak M (2013) Haematology: Ponatinib-the next TKI challenge. Nat Rev Clin Oncol 10(2): 65.
|
[6] | Dewar R, Chen ST, Yeckes-Rodin H, Miller K, Khosravi-Far R (2011) Bortezomib treatment causes remission in a Ph+ALL patient and reveals FoxO as a theranostic marker. Cancer Biol Ther 11(6): 552-558. doi:10.4161/cbt.11.6.14675. PubMed: 21282974.
|
[7] | Available: www.clinicaltrials.gov.
|
[8] | Santos FP, Kantarjian H, McConkey D, O'Brien S, Faderl S et al. (2011) Pilot study of bortezomib for patients with imatinib-refractory chronic myeloid leukemia in chronic or accelerated phase. Clin Lymphoma Myeloma Leuk 11(4): 355-360. doi:10.1016/j.clml.2011.06.004. PubMed: 21816374.
|
[9] | Dai Y, Yu C, Singh V, Tang L, Wang Z et al. (2001) Pharmacological inhibitors of the mitogen-activated protein kinase (MAPK) kinase/MAPK cascade interact synergistically with UCN-01 to induce mitochondrial dysfunction and apoptosis in human leukemia cells. Cancer Res 61(13): 5106-5115. PubMed: 11431348.
|
[10] | Mehnert JM, Tan AR, Moss R, Poplin E, Stein MN et al. (2011) Rationally designed treatment for solid tumors with MAPK pathway activation: a phase I study of paclitaxel and bortezomib using an adaptive dose-finding approach. Mol Cancer Ther 10(8): 1509-1519. doi:10.1158/1535-7163.MCT-10-0944. PubMed: 21680752.
|
[11] | Kim SY, Kim DH, Lee HJ, Seo YJ, Lee JH et al. (2011) Treatment of Disseminated Classic Type of Kaposi's Sarcoma with Paclitaxel. Ann Dermatol 23(4): 504-507. doi:10.5021/ad.2011.23.4.504. PubMed: 22148021.
|
[12] | Yu C, Rahmani M, Almenara J, Subler M, Krystal G et al. (2003) Histone deacetylase inhibitors promote STI571-mediated apoptosis in STI571-sensitive and -resistant Bcr/Abl+ human myeloid leukemia cells. Cancer Res 63(9): 2118-2126. PubMed: 12727828.
|
[13] | Ray S, Bucur O, Almasan A (2005) Sensitization of prostate carcinoma cells to Apo2L/TRAIL by a Bcl-2 family protein inhibitor. Apoptosis 10(6): 1411-1418. doi:10.1007/s10495-005-2490-y. PubMed: 16215673.
|
[14] | Chou TC, Talalay P (1984) Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22: 27-55. doi:10.1016/0065-2571(84)90007-4. PubMed: 6382953.
|
[15] | Singh A, Ye M, Bucur O, Zhu S, Tanya Santos M et al. (2010) Protein phosphatase 2A reactivates FOXO3a through a dynamic interplay with 14-3-3 and AKT. Mol Cell Biol 21(6): 1140-1152. doi:10.1091/mbc.E09-09-0795. PubMed: 20110348.
|
[16] | Gangemi RM, Santamaria B, Bargellesi A, Cosulich E, Fabbi M (2000) Late apoptotic effects of taxanes on K562 erythroleukemia cells: apoptosis is delayed upstream of caspase-3 activation. Int J Cancer 85(4): 527-533. doi:10.1002/(SICI)1097-0215(20000215)85:4. PubMed: 10699926.
|
[17] | Bucur O, Stancu AL, Khosravi-Far R, Almasan A (2012) Analysis of apoptosis methods recently used in Cancer Research and Cell Death & Disease publications. Cell Death. Drosophila Inf Serv 3: e263.
|
[18] | Seo JH, Wood LJ, Agarwal A, O'Hare T, Elsea CR et al. (2010) A specific need for CRKL in p210BCR-ABL-induced transformation of mouse hematopoietic progenitors. Cancer Res 70(18): 7325-7335. doi:10.1158/0008-5472.CAN-10-0607. PubMed: 20807813.
|
[19] | Wu J, Meng F, Kong LY, Peng Z, Ying Y et al. (2008) Association between imatinib-resistant BCR-ABL mutation-negative leukemia and persistent activation of LYN kinase. J Natl Cancer Inst 100(13): 926-939. doi:10.1093/jnci/djn188. PubMed: 18577747.
|
[20] | Coppo P, Dusanter-Fourt I, Millot G, Nogueira MM, Dugray A et al. (2003) Constitutive and specific activation of STAT3 by BCR-ABL in embryonic stem cells. Oncogene 22(26): 4102-4110. doi:10.1038/sj.onc.1206607. PubMed: 12821944.
|
[21] | Bewry NN, Nair RR, Emmons MF, Boulware D, Pinilla-Ibarz J et al. (2008) Stat3 contributes to resistance toward BCR-ABL inhibitors in a bone marrow microenvironment model of drug resistance. Mol Cancer Ther 7(10): 3169-3175. doi:10.1158/1535-7163.MCT-08-0314. PubMed: 18852120.
|
[22] | Wei G, Rafiyath S, Liu D (2010) First-line treatment for chronic myeloid leukemia: dasatinib, nilotinib, or imatinib. Hematol Oncol 3: 47. doi:10.1186/1756-8722-3-47.
|
[23] | Gleixner KV, Ferenc V, Peter B, Gruze A, Meyer RA et al. (2010) Polo-like kinase 1 (Plk1) as a novel drug target in chronic myeloid leukemia: overriding imatinib resistance with the Plk1 inhibitor BI 2536. Cancer Res 70(4): 1513-1523. doi:10.1158/0008-5472.CAN-09-2181. PubMed: 20145140.
|
[24] | Hotchkiss KA, Ashton AW, Mahmood R, Russell RG, Sparano JA et al. (2002) Inhibition of endothelial cell function in vitro and angiogenesis in vivo by docetaxel (Taxotere): association with impaired repositioning of the microtubule organizing center. Mol Cancer Ther 1(13): 1191-1200. PubMed: 12479700.
|
[25] | Wertz IE, Kusam S, Lam C, Okamoto T, Sandoval W et al. (2011) Sensitivity to antitubulin chemotherapeutics is regulated by MCL1 and FBW7. Nature 471(7336): 110-114. doi:10.1038/nature09779. PubMed: 21368834.
|
[26] | Wu J, Meng F, Lu H, Kong L, Bornmann W et al. (2008) Lyn regulates BCR-ABL and Gab2 tyrosine phosphorylation and c-Cbl protein stability in imatinib-resistant chronic myelogenous leukemia cells. Blood 111(7): 3821-3829. doi:10.1182/blood-2007-08-109330. PubMed: 18235045.
|
[27] | He Y, Wertheim JA, Xu L, Miller JP, Karnell FG et al. (2002) The coiled-coil domain and Tyr177 of bcr are required to induce a murine chronic myelogenous leukemia-like disease by bcr/abl. Blood 99(8): 2957-2968. doi:10.1182/blood.V99.8.2957. PubMed: 11929787.
|
[28] | Ptasznik A, Urbanowska E, Chinta S, Costa MA, Katz BA et al. (2002) Crosstalk between BCR/ABL oncoprotein and CXCR4 signaling through a Src family kinase in human leukemia cells. J Exp Med 196(5): 667-678. doi:10.1084/jem.20020519. PubMed: 12208881.
|
[29] | Ghaffari S, Jagani Z, Kitidis C, Lodish HF, Khosravi-Far R (2003) Cytokines and BCR-ABL mediate suppression of TRAIL-induced apoptosis through inhibition of forkhead FOXO3a transcription factor. Proc Natl Acad Sci U_S_A 100(11): 6523-6528. doi:10.1073/pnas.0731871100. PubMed: 12750477.
|
[30] | Hantschel O, Warsch W, Eckelhart E, Kaupe I, Grebien F et al. (2012) BCR-ABL uncouples canonical JAK2-STAT5 signaling in chronic myeloid leukemia. Nat Chem Biol 8(3): 285-293. doi:10.1038/nchembio.775. PubMed: 22286129.
|
[31] | Johnson KJ, Griswold IJ, O'Hare T, Corbin AS, Loriaux M et al. (2009) A BCR-ABL mutant lacking direct binding sites for the GRB2, CBL and CRKL adapter proteins fails to induce leukemia in mice. PLOS ONE 4(10): e7439. doi:10.1371/journal.pone.0007439. PubMed: 19823681.
|
[32] | Sattler M, Salgia R (1998) Role of the adapter protein CRKL in signal transduction of normal hematopoietic and BCR/ABL-transformed cells. Leukemia 12(5): 637-644. doi:10.1038/sj.leu.2401010. PubMed: 9593259.
|
[33] | Hemmeryckx B, van Wijk A, Reichert A, Kaartinen V, de Jong R et al. (2001) Crkl enhances leukemogenesis in BCR/ABL P190 transgenic mice. Cancer Res 61(4): 1398-1405. PubMed: 11245441.
|
[34] | Uemura N, Griffin JD (1999) The adapter protein Crkl links Cbl to C3G after integrin ligation and enhances cell migration. J Biol Chem 274(53): 37525-37532. doi:10.1074/jbc.274.53.37525. PubMed: 10608804.
|
[35] | Nimmanapalli R, Fuino L, Stobaugh C, Richon V, Bhalla K (2003) Cotreatment with the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) enhances imatinib-induced apoptosis of Bcr-Abl-positive human acute leukemia cells. Blood 101(8): 3236-3239. doi:10.1182/blood-2002-08-2675. PubMed: 12446442.
|
[36] | Nimmanapalli R, O'Bryan E, Huang M, Bali P, Burnette PK et al. (2002) Molecular characterization and sensitivity of STI-571 (imatinib mesylate, Gleevec)-resistant, Bcr-Abl-positive, human acute leukemia cells to SRC kinase inhibitor PD180970 and 17-allylamino-17-demethoxygeldanamycin. Cancer Res 62(20): 5761-5769. PubMed: 12384536.
|
[37] | Wang Y, Cai D, Brendel C, Barett C, Erben P et al. (2007) Adaptive secretion of granulocyte-macrophage colony-stimulating factor (GM-CSF) mediates imatinib and nilotinib resistance in BCR/ABL+ progenitors via JAK-2/STAT-5 pathway activation. Blood 109(5): 2147-2155. doi:10.1182/blood-2006-08-040022. PubMed: 17090651.
|
[38] | Mow BM, Chandra J, Svingen PA, Hallgren CG, Weisberg E et al. (2002) Effects of the Bcr/abl kinase inhibitors STI571 and adaphostin (NSC 680410) on chronic myelogenous leukemia cells in vitro. Blood 99(2): 664-671. doi:10.1182/blood.V99.2.664. PubMed: 11781252.
|
[39] | Yu C, Rahmani M, Conrad D, Subler M, Dent P et al. (2003) The proteasome inhibitor bortezomib interacts synergistically with histone deacetylase inhibitors to induce apoptosis in Bcr/Abl+ cells sensitive and resistant to STI571. Blood 102(10): 3765-3774. doi:10.1182/blood-2003-03-0737. PubMed: 12893773.
|
[40] | Stein SJ, Baldwin AS (2011) NF-κB suppresses ROS levels in BCR-ABL(+) cells to prevent activation of JNK and cell death. Oncogene 30(45): 4557-4566. doi:10.1038/onc.2011.156. PubMed: 21625221.
|
[41] | Gopalan A, Yu W, Sanders BG, Kline K (2013) Simvastatin inhibition of mevalonate pathway induces apoptosis in human breast cancer cells via activation of JNK/CHOP/DR5 signaling pathway. Cancer Lett 329(1): 9-16. doi:10.1016/j.canlet.2012.08.031. PubMed: 22960596.
|
[42] | Plati J, Bucur O, Khosravi-Far R (2008) Dysregulation of apoptotic signaling in cancer: molecular mechanisms and therapeutic opportunities. J Cell Biochem 104(4): 1124-1149. doi:10.1002/jcb.21707. PubMed: 18459149.
|
[43] | Bucur O, Ray S, Bucur MC, Almasan A (2006) APO2 ligand/tumor necrosis factor-related apoptosis-inducing ligand in prostate cancer therapy. Front Biosci 11: 1549-1568. doi:10.2741/1903. PubMed: 16368536.
|
[44] | Melet A, Song K, Bucur O, Jagani Z, Grassian AR et al. (2008) Apoptotic pathways in tumor progression and therapy. Adv Exp Med Biol 615: 47-79. doi:10.1007/978-1-4020-6554-5_4. PubMed: 18437891.
|
[45] | Plati J, Bucur O, Khosravi-Far R (2011) Apoptotic cell signaling in cancer progression and therapy. Integr Biol (Camb) 3(4): 279-296. doi:10.1039/c0ib00144a. PubMed: 21340093.
|
[46] | Myssina S, Helgason GV, Serrels A, J?rgensen HG, Bhatia R et al. (2009) Combined BCR-ABL inhibition with lentiviral-delivered shRNA and dasatinib augments induction of apoptosis in Philadelphia-positive cells. Exp Hematol 37(2): 206-214. doi:10.1016/j.exphem.2008.10.013. PubMed: 19100678.
|
[47] | Marech I, Vacca A, Ranieri G, Gnoni A, Dammacco F (2012) Novel strategies in the treatment of castration-resistant prostate cancer. Int J Oncol 40(5): 1313-1320. PubMed: 22322981.
|
[48] | Habermann TM (2012) New developments in the management of diffuse large B-cell lymphoma. Hematology 17 Suppl 1: S93-S97. PubMed: 22507791.
|
[49] | Available: http://www.fda.gov/NewsEvents/Newsroom/P?ressAnnouncements/ucm325895.htm.
|
[50] | Khoury HJ, Cortes JE, Kantarjian HM, Gambacorti-Passerini C, Baccarani M et al. (2012) Bosutinib is active in chronic phase chronic myeloid leukemia after imatinib and dasatinib and/or nilotinib therapy failure. Blood 119(15): 3403-3412. doi:10.1182/blood-2011-11-390120. PubMed: 22371878.
|
[51] | Cortes J, Lipton JH, Rea D, Digumarti R, Chuah C et al. (2012) Phase 2 study of subcutaneous omacetaxine mepesuccinate after TKI failure in patients with chronic-phase CML with T315I mutation. Blood 120(13): 2573-2580. doi:10.1182/blood-2012-03-415307. PubMed: 22896000.
|
[52] | Mizuno H, Nakayama T, Miyata Y, Saito S, Nishiwaki S et al. (2012) Mast cells promote the growth of Hodgkin's lymphoma cell tumor by modifying the tumor microenvironment that can be perturbed by bortezomib. Leukemia 26(10): 2269-2276. doi:10.1038/leu.2012.81. PubMed: 22430634.
|
[53] | Podar K, Chauhan D, Anderson KC (2009) Bone marrow microenvironment and the identification of new targets for myeloma therapy. Leukemia 23(1): 10-24. doi:10.1038/leu.2008.259. PubMed: 18843284.
|
[54] | Correia AL, Bissell MJ (2012) The tumor microenvironment is a dominant force in multidrug resistance. Drug Resist Update 15(1-2): 39-49. doi:10.1016/j.drup.2012.01.006. PubMed: 22335920.
|
[55] | Seke Etet PF, Vecchio L, Nwabo Kamdje AH (2012) Signaling pathways in chronic myeloid leukemia and leukemic stem cell maintenance: key role of stromal microenvironment. Cell Signal 24(9): 1883-1888. doi:10.1016/j.cellsig.2012.05.015. PubMed: 22659137.
|
[56] | Yusuf RZ, Wang YH, Scadden DT (2012) The secrets of the bone marrow niche: Metabolic priming for AML. Nat Med 18(6): 865-867. doi:10.1038/nm.2831. PubMed: 22673998.
|
[57] | Nardi V, Naveiras O, Azam M, Daley GQ (2009) ICSBP-mediated immune protection against BCR-ABL-induced leukemia requires the CCL6 and CCL9 chemokines. Blood 113(16): 3813-3820. doi:10.1182/blood-2008-07-167189. PubMed: 19171873.
|