[1] | Pulendran B, Ahmed R (2011) Immunological mechanisms of vaccination. Nat Immunol 12: 509–517.
|
[2] | Grun JL, Maurer PH (1989) Different T helper cell subsets elicited in mice utilizing two different adjuvant vehicles: the role of endogenous interleukin 1 in proliferative responses. Cell Immunol 121: 134–145.
|
[3] | Pulendran B, Artis D (2012) New paradigms in type 2 immunity. Science 337: 431–435 337/6093/431 [pii];10.1126/science.1221064 [doi].
|
[4] | Rabin EM, Ohara J, Paul WE (1985) B-cell stimulatory factor 1 activates resting B cells. Proc Natl Acad Sci U S A 82: 2935–2939.
|
[5] | Coffman RL, Ohara J, Bond MW, Carty J, Zlotnik A, et al. (1986) B cell stimulatory factor-1 enhances the IgE response of lipopolysaccharide-activated B cells. J Immunol 136: 4538–4541.
|
[6] | Vitetta ES, Ohara J, Myers CD, Layton JE, Krammer PH, et al. (1985) Serological, biochemical, and functional identity of B cell-stimulatory factor 1 and B cell differentiation factor for IgG1. J Exp Med 162: 1726–1731.
|
[7] | Finkelman FD, Katona IM, Mosmann TR, Coffman RL (1988) IFN-gamma regulates the isotypes of Ig secreted during in vivo humoral immune responses. J Immunol 140: 1022–1027.
|
[8] | Baldridge JR, Crane RT (1999) Monophosphoryl lipid A (MPL) formulations for the next generation of vaccines. Methods 19: 103–107 10.1006/meth.1999.0834 [doi];S1046-2023(99)90834-4 [pii].
|
[9] | Glimcher LH, Murphy KM (2000) Lineage commitment in the immune system: the T helper lymphocyte grows up. Genes Dev 14: 1693–1711.
|
[10] | Kawamura H, Berzofsky JA (1986) Enhancement of antigenic potency in vitro and immunogenicity in vivo by coupling the antigen to anti-immunoglobulin. J Immunol 136: 58–65.
|
[11] | Snider DP, Segal DM (1987) Targeted antigen presentation using crosslinked antibody heteroaggregates. J Immunol 139: 1609–1616.
|
[12] | Casten LA, Pierce SK (1988) Receptor-mediated B cell antigen processing. Increased antigenicity of a globular protein covalently coupled to antibodies specific for B cell surface structures. J Immunol 140: 404–410.
|
[13] | Lees A, Morris SC, Thyphronitis G, Holmes JM, Inman JK, et al. (1990) Rapid stimulation of large specific antibody responses with conjugates of antigen and anti-IgD antibody. J Immunol 145: 3594–3600.
|
[14] | Baier G, Baier-Bitterlich G, Looney DJ, Altman A (1995) Immunogenic targeting of recombinant peptide vaccines to human antigen-presenting cells by chimeric anti-HLA-DR and anti-surface immunoglobulin D antibody Fab fragments in vitro. J Virol 69: 2357–2365.
|
[15] | Boyle JS, Brady JL, Lew AM (1998) Enhanced responses to a DNA vaccine encoding a fusion antigen that is directed to sites of immune induction. Nature 392: 408–411 10.1038/32932 [doi].
|
[16] | Lunde E, Munthe LA, Vabo A, Sandlie I, Bogen B (1999) Antibodies engineered with IgD specificity efficiently deliver integrated T-cell epitopes for antigen presentation by B cells. Nat Biotechnol 17: 670–675 10.1038/10883 [doi].
|
[17] | Biragyn A, Tani K, Grimm MC, Weeks S, Kwak LW (1999) Genetic fusion of chemokines to a self tumor antigen induces protective, T-cell dependent antitumor immunity. Nat Biotechnol 17: 253–258 10.1038/6995 [doi].
|
[18] | Biragyn A, Ruffini PA, Coscia M, Harvey LK, Neelapu SS, et al. (2004) Chemokine receptor-mediated delivery directs self-tumor antigen efficiently into the class II processing pathway in vitro and induces protective immunity in vivo. Blood 104: 1961–1969 10.1182/blood-2004-02-0637 [doi];2004-02-0637 [pii].
|
[19] | Wille-Reece U, Wu CY, Flynn BJ, Kedl RM, Seder RA (2005) Immunization with HIV-1 Gag protein conjugated to a TLR7/8 agonist results in the generation of HIV-1 Gag-specific Th1 and CD8+ T cell responses. J Immunol 174: 7676–7683 174/12/7676 [pii].
|
[20] | Fredriksen AB, Sandlie I, Bogen B (2006) DNA vaccines increase immunogenicity of idiotypic tumor antigen by targeting novel fusion proteins to antigen-presenting cells. Mol Ther 13: 776–785 S1525–0016(05)01701-6 [pii];10.1016/j.ymthe.2005.10.019 [doi].
|
[21] | Schiavo R, Baatar D, Olkhanud P, Indig FE, Restifo N, et al. (2006) Chemokine receptor targeting efficiently directs antigens to MHC class I pathways and elicits antigen-specific CD8+ T-cell responses. Blood 107: 4597–4605 2005-08-3207 [pii];10.1182/blood-2005-08-3207 [doi].
|
[22] | Fredriksen AB, Bogen B (2007) Chemokine-idiotype fusion DNA vaccines are potentiated by bivalency and xenogeneic sequences. Blood 110: 1797–1805 blood-2006-06-032938 [pii];10.1182/blood-2006-06-032938 [doi].
|
[23] | Schjetne KW, Fredriksen AB, Bogen B (2007) Delivery of antigen to CD40 induces protective immune responses against tumors. J Immunol 178: 4169–4176 178/7/4169 [pii].
|
[24] | Dudziak D, Kamphorst AO, Heidkamp GF, Buchholz VR, Trumpfheller C, et al. (2007) Differential antigen processing by dendritic cell subsets in vivo. Science 315: 107–111 315/5808/107 [pii];10.1126/science.1136080 [doi].
|
[25] | Ruffini PA, Grodeland G, Fredriksen AB, Bogen B (2010) Human chemokine MIP1alpha increases efficiency of targeted DNA fusion vaccines. Vaccine 29: 191–199 S0264-410X(10)01558-6 [pii];10.1016/j.vaccine.2010.10.057 [doi].
|
[26] | Treanor JJ, Taylor DN, Tussey L, Hay C, Nolan C, et al. (2010) Safety and immunogenicity of a recombinant hemagglutinin influenza-flagellin fusion vaccine (VAX125) in healthy young adults. Vaccine 28: 8268–8274 S0264-410X(10)01469-6 [pii];10.1016/j.vaccine.2010.10.009 [doi].
|
[27] | Grodeland G, Mjaaland S, Roux KH, Fredriksen AB, Bogen B (2013) DNA vaccine that target hemagglutinin to MHC II-molecules rapidly induces antibody-mediated protection against influenza. J Immunol 191: 3221–3231.
|
[28] | Staudt LM, Gerhard W (1983) Generation of antibody diversity in the immune response of BALB/c mice to influenza virus hemagglutinin. I. Significant variation in repertoire expression between individual mice. J Exp Med 157: 687–704.
|
[29] | Prat M, Gribaudo G, Comoglio PM, Cavallo G, Landolfo S (1984) Monoclonal antibodies against murine gamma interferon. Proc Natl Acad Sci U S A 81: 4515–4519.
|
[30] | Yang Z, Day YJ, Toufektsian MC, Xu Y, Ramos SI, et al. (2006) Myocardial infarct-sparing effect of adenosine A2A receptor activation is due to its action on CD4+ T lymphocytes. Circulation 114: 2056–2064 CIRCULATIONAHA.106.649244 [pii];10.1161/CIRCULATIONAHA.106.649244 [doi].
|
[31] | Andreasson K, Eriksson M, Tegerstedt K, Ramqvist T, Dalianis T (2010) CD4+ and CD8+ T cells can act separately in tumour rejection after immunization with murine pneumotropic virus chimeric Her2/neu virus-like particles. PLoS One 5: e11580 10.1371/journal.pone.0011580 [doi].
|
[32] | Tamura M, Kuwano K, Kurane I, Ennis FA (1998) Definition of amino acid residues on the epitope responsible for recognition by influenza A virus H1-specific, H2-specific, and H1- and H2-cross-reactive murine cytotoxic T-lymphocyte clones. J Virol 72: 9404–9406.
|
[33] | Hackett CJ, Dietzschold B, Gerhard W, Ghrist B, Knorr R, et al. (1983) Influenza virus site recognized by a murine helper T cell specific for H1 strains. Localization to a nine amino acid sequence in the hemagglutinin molecule. J Exp Med 158: 294–302.
|
[34] | Scott B, Liblau R, Degermann S, Marconi LA, Ogata L, et al. (1994) A role for non-MHC genetic polymorphism in susceptibility to spontaneous autoimmunity. Immunity 1: 73–83 1074-7613(94)90011-6 [pii].
|
[35] | Roos AK, Eriksson F, Walters DC, Pisa P, King AD (2009) Optimization of skin electroporation in mice to increase tolerability of DNA vaccine delivery to patients. Mol Ther 17: 1637–1642 mt2009120 [pii];10.1038/mt.2009.120 [doi].
|
[36] | Hickling JK, Jones KR, Friede M, Zehrung D, Chen D, et al. (2011) Intradermal delivery of vaccines: potential benefits and current challenges. Bull World Health Organ 89: 221–226 10.2471/BLT.10.079426 [doi].
|
[37] | Conway MA, Madrigal-Estebas L, McClean S, Brayden DJ, Mills KH (2001) Protection against Bordetella pertussis infection following parenteral or oral immunization with antigens entrapped in biodegradable particles: effect of formulation and route of immunization on induction of Th1 and Th2 cells. Vaccine 19: 1940–1950 S0264-410X(00)00433-3 [pii].
|
[38] | Apostolopoulos V, Pietersz GA, Loveland BE, Sandrin MS, McKenzie IF (1995) Oxidative/reductive conjugation of mannan to antigen selects for T1 or T2 immune responses. Proc Natl Acad Sci U S A 92: 10128–10132.
|
[39] | Chow YH, Chiang BL, Lee YL, Chi WK, Lin WC, et al. (1998) Development of Th1 and Th2 populations and the nature of immune responses to hepatitis B virus DNA vaccines can be modulated by codelivery of various cytokine genes. J Immunol 160: 1320–1329.
|
[40] | Ting JP, Trowsdale J (2002) Genetic control of MHC class II expression. Cell 109 SupplS21–S33 S0092867402006967 [pii].
|
[41] | Menten P, Wuyts A, Van DJ (2002) Macrophage inflammatory protein-1. Cytokine Growth Factor Rev 13: 455–481 S135961010200045X [pii].
|
[42] | Idoyaga J, Lubkin A, Fiorese C, Lahoud MH, Caminschi I, et al. (2011) Comparable T helper 1 (Th1) and CD8 T-cell immunity by targeting HIV gag p24 to CD8 dendritic cells within antibodies to Langerin, DEC205, and Clec9A. Proc Natl Acad Sci U S A 108: 2384–2389 1019547108 [pii];10.1073/pnas.1019547108 [doi].
|
[43] | Aihara H, Miyazaki J (1998) Gene transfer into muscle by electroporation in vivo. Nat Biotechnol 16: 867–870 10.1038/nbt0998-867 [doi].
|
[44] | Roos AK, Eriksson F, Walters DC, Pisa P, King AD (2009) Optimization of skin electroporation in mice to increase tolerability of DNA vaccine delivery to patients. Mol Ther 17: 1637–1642 mt2009120 [pii];10.1038/mt.2009.120 [doi].
|
[45] | Peng B, Zhao Y, Xu L, Xu Y (2007) Electric pulses applied prior to intramuscular DNA vaccination greatly improve the vaccine immunogenicity. Vaccine 25: 2064–2073 S0264-410X(06)01233-3 [pii];10.1016/j.vaccine.2006.11.042 [doi].
|
[46] | Roos AK, Eriksson F, Timmons JA, Gerhardt J, Nyman U, et al. (2009) Skin electroporation: effects on transgene expression, DNA persistence and local tissue environment. PLoS One 4: e7226 10.1371/journal.pone.0007226 [doi].
|
[47] | Cox NJ, Subbarao K (1999) Influenza. Lancet 354: 1277–1282 S0140-6736(99)01241-6 [pii];10.1016/S0140-6736(99)01241-6 [doi].
|
[48] | Mueller A, Kelly E, Strange PG (2002) Pathways for internalization and recycling of the chemokine receptor CCR5. Blood 99: 785–791.
|
[49] | McMichael AJ, Gotch FM, Noble GR, Beare PA (1983) Cytotoxic T-cell immunity to influenza. N Engl J Med 309: 13–17 10.1056/NEJM198307073090103 [doi].
|
[50] | Ulmer JB, Fu TM, Deck RR, Friedman A, Guan L, et al. (1998) Protective CD4+ and CD8+ T cells against influenza virus induced by vaccination with nucleoprotein DNA. J Virol 72: 5648–5653.
|
[51] | Epstein SL, Stack A, Misplon JA, Lo CY, Mostowski H, et al. (2000) Vaccination with DNA encoding internal proteins of influenza virus does not require CD8(+) cytotoxic T lymphocytes: either CD4(+) or CD8(+) T cells can promote survival and recovery after challenge. Int Immunol 12: 91–101.
|
[52] | Wilkinson TM, Li CK, Chui CS, Huang AK, Perkins M, et al. (2012) Preexisting influenza-specific CD4+ T cells correlate with disease protection against influenza challenge in humans. Nat Med 18: 274–280 nm.2612 [pii];10.1038/nm.2612 [doi].
|
[53] | Bennett SR, Carbone FR, Karamalis F, Miller JF, Heath WR (1997) Induction of a CD8+ cytotoxic T lymphocyte response by cross-priming requires cognate CD4+ T cell help. J Exp Med 186: 65–70.
|
[54] | Bender BS, Croghan T, Zhang L, Small PA Jr (1992) Transgenic mice lacking class I major histocompatibility complex-restricted T cells have delayed viral clearance and increased mortality after influenza virus challenge. J Exp Med 175: 1143–1145.
|
[55] | von Herrath MG, Yokoyama M, Dockter J, Oldstone MB, Whitton JL (1996) CD4-deficient mice have reduced levels of memory cytotoxic T lymphocytes after immunization and show diminished resistance to subsequent virus challenge. J Virol 70: 1072–1079.
|
[56] | Cardin RD, Brooks JW, Sarawar SR, Doherty PC (1996) Progressive loss of CD8+ T cell-mediated control of a gamma-herpesvirus in the absence of CD4+ T cells. J Exp Med 184: 863–871.
|