All Title Author
Keywords Abstract

PLOS ONE  2013 

Impact of Perinatal Systemic Hypoxic–Ischemic Injury on the Brain of Male Offspring Rats: An Improved Model of Neonatal Hypoxic–Ischemic Encephalopathy in Early Preterm Newborns

DOI: 10.1371/journal.pone.0082502

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this study, we attempted to design a model using Sprague-Dawley rats to better reproduce perinatal systemic hypoxic-ischemic encephalopathy (HIE) in early preterm newborns. On day 21 of gestation, the uterus of pregnant rats were exposed and the blood supply to the fetuses of neonatal HIE groups were thoroughly abscised by hemostatic clamp for 5, 10 or 15 min. Thereafter, fetuses were moved from the uterus and manually stimulated to initiate breathing in an incubator at 37 °C for 1 hr in air. We showed that survival rates of offspring rats were decreased with longer hypoxic time. TUNEL staining showed that apoptotic cells were significant increased in the brains of offspring rats from the 10 min and 15 min HIE groups as compared to the offspring rats in the control group at postnatal day (PND) 1, but there was no statistical difference between the offspring rats in the 5 min HIE and control groups. The perinatal hypoxic treatment resulted in decreased neurons and increased cleaved caspase-3 protein levels in the offspring rats from all HIE groups at PND 1. Platform crossing times and the percentage of the time spent in the target quadrant of Morris Water Maze test were significantly reduced in the offspring rats of all HIE groups at PND 30, which were associated with decreased brain-derived neurotrophic factor levels and neuronal cells in the hippocampus of offspring rats at PND 35. These data demonstrated that perinatal ischemic injury led to the death of neuronal cells and long-lasting impairment of memory. This model reproduced hypoxic ischemic encephalopathy in early preterm newborns and may be appropriate for investigating therapeutic interventions.

References

[1]  Horn AR, Swingler GH, Myer L, Linley LL, Raban MS et al. (2013) Early clinical signs in neonates with hypoxic ischemic encephalopathy predict an abnormal amplitude-integrated electroencephalogram at age 6 hours. BMC Pediatr 13(1): 52. doi:10.1186/1471-2431-13-52. PubMed: 23574923.
[2]  Ferriero DM (2004) Neonatal brain injury. N Engl J Med 351: 1985-1995. doi:10.1056/NEJMra041996. PubMed: 15525724.
[3]  Pimentel-Coelho PM, Rosado-de-Castro PH, Barbosada Fonseca LM, Mendez-Otero R (2012) Umbilical cord blood mononuclear cell transplantation for neonatal hypoxic–ischemic encephalopathy. Pediatr Res 71(4): 464-473. PubMed: 22430382.
[4]  Kurinczuk JJ, White-Koning M, Badawi N (2010) Epidemiology of neonatal encephalopathy and hypoxic-ischaemic encephalopathy. Early Hum Dev 86: 329–338. doi:10.1016/j.earlhumdev.2010.05.010. PubMed: 20554402.
[5]  Walsh BH, Broadhurst DI, Mandal R, Wishart DS, Boylan GB et al. (2012) The metabolomic profile of umbilical cord blood in neonatal hypoxic ischaemic encephalopathy. PLOS ONE 7(12): e50520. doi:10.1371/journal.pone.0050520. PubMed: 23227182.
[6]  Graham EM, Ruis KA, Hartman AL, Northington FJ, Fox HE (2008) A systematic review of the role of intrapartum hypoxia-ischemia in the causation of neonatal encephalopathy. Am J Obstet Gynecol 199: 587–595. doi:10.1016/j.ajog.2008.06.094. PubMed: 19084096.
[7]  de Vries LS, Jongmans MJ (2010) Long-term outcome after neonatal hypoxic-ischaemic encephalopathy. Arch Dis Child Fetal Neonatal Ed 95: F220–F224. doi:10.1136/adc.2008.148205. PubMed: 20444814.
[8]  van Laerhoven H, de Haan TR, Offringa M, Post B, van der Lee JH (2013) Prognostic tests in term neonates with hypoxic-ischemic encephalopathy: a systematic review. Pediatrics 131(1): 88-98. doi:10.1542/peds.2012-0197. PubMed: 23248219.
[9]  Greenfield AL, Miller F, Gross GW (1999) Diagnosis and management of orthopedic problems in children with cerebral palsy. Semin Musculoskelet Radiol 3: 317-334. doi:10.1055/s-2008-1080076. PubMed: 11388926.
[10]  Towfighi J, Mauger D, Vannucci RC, Vannucci SJ (1997) Influence of age on the cerebral lesions in an immature rat model of cerebral hypoxia-ischemia: a light microscopic study. Brain Res. Dev Brain Res 100: 149-160. doi:10.1016/S0165-3806(97)00036-9.
[11]  Vannucci RC, Rossini A, Towfighi J, Vannucci SJ (1997) Measuring the accentuation of the brain damage that arises from perinatal cerebral hypoxia-ischemia. Biol Neonate 72: 187-191. doi:10.1159/000244483. PubMed: 9303218.
[12]  Levine S (1960) Anoxic-ischemic encephalopathy in rats. Am J Pathol 36: 1–17. PubMed: 14416289.
[13]  Rice JE, Vannucci RC, Brierley JB (1981) The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann Neurol 9: 131–141. doi:10.1002/ana.410090206. PubMed: 7235629.
[14]  Huang YJ, Xu HW, Li H, Yang HH, Chen YB et al. (2012) Pre-gestational stress reduces the ratio of 5-HIAA to 5-HT and the expression of 5-HT1A receptor and serotonin transporter in the brain of foetal rat. BMC Neurosci 13: 22. doi:10.1186/1471-2202-13-S1-P22. PubMed: 22373128.
[15]  Huang YJ, Shi XC, Xu HW, Yang HH, Chen T et al. (2010) Chronic unpredictable stress before pregnancy reduce the expression of brainderived neurotrophic factor and N-methyl-D-aspartate receptor in hippocampus of offspring rats associated with impairment of memory. Neurochem Res 35(7): 1038-1049. doi:10.1007/s11064-010-0152-0. PubMed: 20309729.
[16]  Cannata DJ, Ireland Z, Dickinson H, Snow RJ, Russell AP et al. (2010) Maternal creatine supplementation from midpregnancy protects the diaphragm of the newborn spiny mouse from intrapartum hypoxia-induced damage. Pediatr Res 68: 393–398. doi:10.1203/00006450-201011001-00778. PubMed: 20639795.
[17]  Ireland Z, Dickinson H, Snow R, Walker DW (2008) Maternal creatine: does it reach the fetus and improve survival after an acute hypoxic episode in the spiny mouse (Acomys cahirinus)? Am J Obstet Gynecol 198: 431.e431–431.e436. PubMed: 18295173.
[18]  Ponsuksili S, Jonas E, Murani E, Phatsara C, Srikanchai T et al. (2008) Trait correlated expression combined with expression QTL analysis reveals biological pathways and candidate genes affecting water holding capacity of muscle. BMC Genomics. 31(9): 367. PubMed: 18671879.
[19]  Nijboer CH, Bonestroo HJ, Zijlstra J, Kavelaars A, Heijnen CJ (2013) Mitochondrial JNK phosphorylation as a novel therapeutic target to inhibit neuroinflammation and apoptosis after neonatal ischemic brain damage. Neurobiol Dis 54: 432-444. doi:10.1016/j.nbd.2013.01.017. PubMed: 23376684.
[20]  Rau TF, Lu Q, Sharma S, Sun X, Leary G et al. (2012) Oxygen glucose deprivation in rat hippocampal slice cultures results in alterations in carnitine homeostasis and mitochondrial dysfunction. PLOS ONE. 7(9): e40881. doi:10.1371/journal.pone.0040881. PubMed: 22984394.
[21]  Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26: 239–257. doi:10.1038/bjc.1972.33. PubMed: 4561027.
[22]  Nicholson DW, Thornberry NA (1997) Caspases: killer proteases. Trends Biochem Sci 22: 299–306. doi:10.1016/S0968-0004(97)01085-2. PubMed: 9270303.
[23]  Kanbak G, Kartkaya K, Ozcelik E, Guvenal AB, Kabay SC et al. (2013) The neuroprotective effect of acute moderate alcohol consumption on caspase-3 mediated neuroapoptosis in traumatic brain injury: the role of lysosomal cathepsin L and nitric oxide. Gene.512(2): 492-495. doi:10.1016/j.gene.2012.10.012. PubMed: 23099040.
[24]  Yon JH, Daniel-Johnson J, Carter LB, Jevtovic-Todorovic V (2005) Anesthesia induces neuronal cell death in the developing rat brain via the intrinsic and extrinsic apoptotic pathways. Neuroscience 135: 815–827. doi:10.1016/j.neuroscience.2005.03.064. PubMed: 16154281.
[25]  Ghavami S, Hashemi M, Ande SR, Yeganeh B, Xiao W et al. (2009) Apoptosis and cancer: mutations within caspase genes. J Med Genet 46: 497–510. doi:10.1136/jmg.2009.066944. PubMed: 19505876.
[26]  Walters J, Pop C, Scott FL, Drag M, Swartz P et al. (2009) A constitutively active and uninhibitable caspase-3 zymogen efficiently induces apoptosis. Biochem J 424: 335–345. doi:10.1042/BJ20090825. PubMed: 19788411.
[27]  Han BH, D'Costa A, Back SA, Parsadanian M, Patel S et al. (2000) BDNF blocks caspase-3 activation in neonatal hypoxia-ischemia. Neurobiol Dis 7: 38–53. doi:10.1006/nbdi.1999.0275. PubMed: 10671321.
[28]  Chapman RS, Chresta CM, Herberg AA, Beere HM, Heer S et al. (1995) Further characterization of the in situ terminal deoxynucleotidyl transferase (TdT) assay for the flow cytometric analysis of apoptosis in drug resistant and drug sensitive leukemia cells. Cytometry 20(3): 245–256. doi:10.1002/cyto.990200308. PubMed: 7587710.
[29]  Rossato JI, Bevilaqua LRM, Myskiw JC (2007) On the role of hippocampal protein synthesis in the consolidation and reconsolidation of object recognition memory. Learn Mem 14: 36–46. doi:10.1101/lm.422607. PubMed: 17272651.
[30]  Dell'Anna E, Iuvone L, Calzolari S, Geloso MC (1997) Effect of acetyl-L-carnitine on hyperactivity and spatial memory deficits of rats exposed to neonatal anoxia. Neurosci Lett 223(3): 201-205. doi:10.1016/S0304-3940(97)13411-5. PubMed: 9080467.
[31]  Kohlhauser C, Kaehler S, Mosgoeller W, Singewald N, Kouvelas D et al. (1999) Histological changes and neurotransmitter levels three months following perinatal asphyxia in the rat. Life Sci 64(23): 2109-2124. doi:10.1016/S0024-3205(99)00160-5. PubMed: 10372653.
[32]  Gomez-Pinilla F, Vaynman S, Ying Z (2008) Brain-derived neurotrophic factor functions as a metabotrophin to mediate the effects of exercise on cognition. Eur J Neurosci 28(11): 2278–2287. doi:10.1111/j.1460-9568.2008.06524.x. PubMed: 19046371.
[33]  Mizuno M, Yamada K, Olariu A, Nawa H, Nabeshima T (2000) Involvement of brain-derived neurotrophic factor in spatial memory formation and maintenance in a radial arm maze test in rats. J Neurosci 20: 7116–7121. PubMed: 10995859.
[34]  Johnston MV, Hagberg H (2007) Sex and the pathogenesis of cerebral palsy. Dev Med Child Neurol 49: 74–78. PubMed: 17209983.
[35]  Hurn PD, Vannucci SJ, Hagberg H (2005) Adult or perinatal brain injury: does sex matter? Stroke. 36: 193–195. doi:10.1161/01.STR.0000153064.41332.f6. PubMed: 15625289.
[36]  Rice JE, Vannucci RC, Brierley JB (1981) The influence of immaturity on hypoxic–ischemic brain damage in the rat. Ann Neurol 9: 131–141. doi:10.1002/ana.410090206. PubMed: 7235629.
[37]  Tsuji M, Wilson MA, Lange MS, Johnston MV (2004) Minocycline worsens hypoxic–ischemic brain injury in a neonatal mouse model. Exp Neurol 189: 58–65. doi:10.1016/j.expneurol.2004.01.011. PubMed: 15296836.

Full-Text

comments powered by Disqus