All Title Author
Keywords Abstract

PLOS ONE  2013 

Genetic Diversity and Population Genetic Structure Analysis of Echinococcus granulosus sensu stricto Complex Based on Mitochondrial DNA Signature

DOI: 10.1371/journal.pone.0082904

Full-Text   Cite this paper   Add to My Lib

Abstract:

The genetic diversity and population genetics of the Echinococcus granulosus sensu stricto complex were investigated based on sequencing of mitochondrial DNA (mtDNA). Total 81 isolates of hydatid cyst collected from ungulate animals from different geographical areas of North India were identified by sequencing of cytochrome c oxidase subunit1 (coxi) gene. Three genotypes belonging to E. granulosus sensu stricto complex were identified (G1, G2 and G3 genotypes). Further the nucleotide sequences (retrieved from GenBank) for the coxi gene from seven populations of E. granulosus sensu stricto complex covering 6 continents, were compared with sequences of isolates analysed in this study. Molecular diversity indices represent overall high mitochondrial DNA diversity for these populations, but low nucleotide diversity between haplotypes. The neutrality tests were used to analyze signatures of historical demographic events. The Tajima’s D test and Fu’s FS test showed negative value, indicating deviations from neutrality and both suggested recent population expansion for the populations. Pairwise fixation index was significant for pairwise comparison of different populations (except between South America and East Asia, Middle East and Europe, South America and Europe, Africa and Australia), indicating genetic differentiation among populations. Based on the findings of the present study and those from earlier studies, we hypothesize that demographic expansion occurred in E. granulosus after the introduction of founder haplotype particular by anthropogenic movements.

References

[1]  McManus DP, Zhang W, Li J, Bartley PB (2003) Echinococcosis. Lancet 362: 1295-1304. doi:10.1016/S0140-6736(03)14573-4. PubMed: 14575976.
[2]  Moro P, Schantz PM (2009) Echinococcosis: a review. Int J Infect Dis 13: 125-133. doi:10.1016/j.ijid.2008.06.025. PubMed: 18938096.
[3]  Eckert J, Deplazes P, Craig PS, Gemmell MA, Gottstein B et al. (2001) Echinococcosis in animals: clinical aspects, diagnosis and treatment.Echinococcosis in humans: clinical aspects, diagnosis and treatment. In: WHO/ OIE manual on echinococcosis in humans and animals: a public health problem of global concern Eckert J, Gemmell M, Meslin F-X, Pawlowski Z, editors. . Paris:World Organisation for Animal Health . pp 73-100.
[4]  Bowles J, Blair D, McManus DP (1992) Genetic variants within the genus Echinococcus identified by mitochondrial DNA sequencing. Mol Biochem Parasitol 54: 165–173. doi:10.1016/0166-6851(92)90109-W. PubMed: 1435857.
[5]  Scott JC, Stefaniak J, Pawlowski ZS, McManus DP (1997) Molecular genetic analysis of human cystic hydatid cases from Poland: identification of a new genotypic group (G9) of Echinococcus granulosus. Parasitology 114: 37–43. doi:10.1017/S0031182096008062. PubMed: 9011072.
[6]  Lavikainen A, Lehtinen MJ, Meri T, Hirvel?-Koski V, Meri S (2003) Molecular genetic characterization of the Fennoscandian cervid strain, a new genotypic group (G10) of Echinococcus granulosus. Parasitology 127: 207–215. doi:10.1017/S0031182003003780. PubMed: 12964823.
[7]  Nakao M, McManus DP, Schantz PM, Craig PS, Ito A (2007) A molecular phylogeny of the genus Echinococcus inferred from complete mitochondrial genomes. Parasitology 134: 713-722. doi:10.1017/S0031182006001934. PubMed: 17156584.
[8]  Thompson RC (2008) The taxonomy, phylogeny and transmission of Echinococcus. Exp Parasitol 119: 439-446. doi:10.1016/j.exppara.2008.04.016. PubMed: 18539274.
[9]  Hüttner M, Nakao M, Wassermann T, Siefert L, Boomker JD et al. (2008) Genetic characterization and phylogenetic position of Echinococcus felidis (Cestoda: Taeniidae) from the African lion. Int J Parasitol 38: 861-868. doi:10.1016/j.ijpara.2007.10.013. PubMed: 18062973.
[10]  Pednekar RP, Gatne ML, Thompson RC, Traub RJ (2009) Molecular and morphological characterisation of Echinococcus from food producing animals in India. Vet Parasitol 165: 58-65. doi:10.1016/j.vetpar.2009.06.021. PubMed: 19632783.
[11]  Singh BB, Sharma JK, Ghatak S, Sharma R, Bal MS et al. (2012) Molecular epidemiology of Echinococcosis from food producing animals in north India. Vet Parasitol 186: 503-506. doi:10.1016/j.vetpar.2011.11.064. PubMed: 22177330.
[12]  Brown WM, George M Jr., Wilson AC (1979) Rapid evolution of animal mitochondrial. DNA - Proc Natl Acad Sci U S A 76: 1967-1971. doi:10.1073/pnas.76.4.1967.
[13]  Sharma M, Sehgal R, Fomda BA, Malhotra A, Malla N (2013) Molecular Characterization of Echinococcus granulosus Cysts in North Indian Patients: Identification of G1, G3, G5 and G6 Genotypes. PLoS Negl Trop. Drosophila Inf Service 7: e2262.
[14]  Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673-4680. doi:10.1093/nar/22.22.4673. PubMed: 7984417.
[15]  Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52: 696-704. doi:10.1080/10635150390235520. PubMed: 14530136.
[16]  Gouy M, Guindon S, Gascuel O (2010) SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27: 221-224. doi:10.1093/molbev/msp259. PubMed: 19854763.
[17]  Templeton AR, Crandall KA, Sing CF (1992) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics 132: 619-633. PubMed: 1385266.
[18]  Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9: 1657-1659. doi:10.1046/j.1365-294x.2000.01020.x. PubMed: 11050560.
[19]  Rozas J, Sánchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19: 2496-2497. doi:10.1093/bioinformatics/btg359. PubMed: 14668244.
[20]  Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585-595. PubMed: 2513255.
[21]  Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147: 915-925. PubMed: 9335623.
[22]  Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evol Bioinform Online 1: 47-50. PubMed: 19325852.
[23]  Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38: 1358-1370. doi:10.2307/2408641.
[24]  Bart JM, Abdukader M, Zhang YL, Lin RY, Wang YH et al. (2006) Genotyping of human cystic echinococcosis in Xinjiang, PR China. Parasitology 133: 571-579. doi:10.1017/S0031182006000734. PubMed: 16836793.
[25]  Zhang L, Eslami A, Hosseini SH, McManus DP (1998) Indication of the presence of two distinct strains of Echinococcus granulosus in Iran by mitochondrial DNA markers. Am J Trop Med Hyg 59: 171-174. PubMed: 9684648.
[26]  de la Rue ML, Takano K, Brochado JF, Costa CV, Soares AG et al. (2011) Infection of humans and animals with Echinococcus granulosus (G1 and G3 strains) and E. ortleppi in Southern Brazil. Vet Parasitol 177: 97-103. doi:10.1016/j.vetpar.2010.11.018. PubMed: 21273000.
[27]  Busi M, Snábel V, Varcasia A, Garippa G, Perrone V et al. (2007) Genetic variation within and between G1 and G3 genotypes of Echinococcus granulosus in Italy revealed by multilocus DNA sequencing. Vet Parasitol 150: 75-83. doi:10.1016/j.vetpar.2007.09.003. PubMed: 17951008.
[28]  Beyhan YE, Umur S (2011) Molecular characterization and prevalence of cystic echinococcosis in slaughtered water buffaloes in Turkey. Vet Parasitol 181: 174-179. doi:10.1016/j.vetpar.2011.04.038. PubMed: 21601988.
[29]  Latif AA, Tanveer A, Maqbool A, Siddiqi N, Kyaw-Tanner M et al. (2010) Morphological and molecular characterization of Echinococcus granulosus in livestock and humans in Punjab, Pakistan. Vet Parasitol 170: 44-49. doi:10.1016/j.vetpar.2010.02.003. PubMed: 20233639.
[30]  Badaraco JL, Ayala FJ, Bart JM, Gottstein B, Haag KL (2008) Using mitochondrial and nuclear markers to evaluate the degree of genetic cohesion among Echinococcus populations. Exp Parasitol 119: 453-459. doi:10.1016/j.exppara.2008.02.004. PubMed: 18367173.
[31]  Nakao M, Li T, Han X, Ma X, Xiao N et al. (2010) Genetic polymorphisms of Echinococcus tapeworms in China as determined by mitochondrial and nuclear DNA sequences. Int J Parasitol 40: 379-385. doi:10.1016/j.ijpara.2009.09.006. PubMed: 19800346.
[32]  Casulli A, Interisano M, Sreter T, Chitimia L, Kirkova Z et al. (2012) Genetic variability of Echinococcus granulosus sensu stricto in Europe inferred by mitochondrial DNA sequences. Infect Genet Evol 12: 377-383. doi:10.1016/j.meegid.2011.12.014. PubMed: 22240082.
[33]  Yanagida T, Mohammadzadeh T, Kamhawi S, Nakao M, Sadjjadi SM et al. (2012) Genetic polymorphisms of Echinococcus granulosus sensu stricto in the Middle East. Parasitol Int 61: 599-603. doi:10.1016/j.parint.2012.05.014. PubMed: 22668837.
[34]  Avise JC (2000) Phylogeography: the history and formation of species. Cambridge: Harvard University Press. p. 447.
[35]  Ramos-Onsins SE, Rozas J (2002) Statistical properties of new neutrality tests against population growth. Mol Biol Evol 19: 2092-2100. doi:10.1093/oxfordjournals.molbev.a004034. PubMed: 12446801.
[36]  Chessa B, Pereira F, Arnaud F, Amorim A, Goyache F et al. (2009) Revealing the history of sheep domestication using retrovirus integrations. Science 324: 532-536. doi:10.1126/science.1170587. PubMed: 19390051.
[37]  Tibayrenc M (2009) Microbial molecular epidemiology: an overview. Methods Mol Biol 551: 1-12. PubMed: 19521862.

Full-Text

comments powered by Disqus