All Title Author
Keywords Abstract

PLOS ONE  2013 

Seasonal Foraging Ecology of Non-Migratory Cougars in a System with Migrating Prey

DOI: 10.1371/journal.pone.0083375

Full-Text   Cite this paper   Add to My Lib


We tested for seasonal differences in cougar (Puma concolor) foraging behaviors in the Southern Yellowstone Ecosystem, a multi-prey system in which ungulate prey migrate, and cougars do not. We recorded 411 winter prey and 239 summer prey killed by 28 female and 10 male cougars, and an additional 37 prey items by unmarked cougars. Deer composed 42.4% of summer cougar diets but only 7.2% of winter diets. Males and females, however, selected different proportions of different prey; male cougars selected more elk (Cervus elaphus) and moose (Alces alces) than females, while females killed greater proportions of bighorn sheep (Ovis canadensis), pronghorn (Antilocapra americana), mule deer (Odocoileus hemionus) and small prey than males. Kill rates did not vary by season or between males and females. In winter, cougars were more likely to kill prey on the landscape as: 1) elevation decreased, 2) distance to edge habitat decreased, 3) distance to large bodies of water decreased, and 4) steepness increased, whereas in summer, cougars were more likely to kill in areas as: 1) elevation decreased, 2) distance to edge habitat decreased, and 3) distance from large bodies of water increased. Our work highlighted that seasonal prey selection exhibited by stationary carnivores in systems with migratory prey is not only driven by changing prey vulnerability, but also by changing prey abundances. Elk and deer migrations may also be sustaining stationary cougar populations and creating apparent competition scenarios that result in higher predation rates on migratory bighorn sheep in winter and pronghorn in summer. Nevertheless, cougar predation on rare ungulates also appeared to be influenced by individual prey selection.


[1]  Giroux MA, Berteaux D, Lecomte N, Gauthier G, Szor G et al. (2012) Benefiting from a migratory prey: spatio-temporal patterns in allochthonous subsidization of an arctic predator. J Anim Ecol 81: 533-542. doi:10.1111/j.1365-2656.2011.01944.x. PubMed: 22268371.
[2]  Johnson HE, Hebblewhite M, Stephenson TR, German DW, Pierce BM et al. (2013) Evaluating apparent competition in limiting the recovery of an endangered ungulate. Oecologia 171: 295-307. doi:10.1007/s00442-012-2397-6. PubMed: 22791131.
[3]  Schaller GB (1972) The Serengeti Lion: a Study of Predator-Prey Relations. University of Chicago Press, Chicago.
[4]  Pierce BM, Bleich VC, Wehausen JD, Bowyer RT (1999) Migratory patterns of mountain lions: implications for social regulation and conservation. J Mamm 80: 986-992. doi:10.2307/1383269.
[5]  Ballard WB, Ayres LA, Krausman PR, Reed DJ, Fancy SG (1997) Ecology of wolves in relation to a migratory caribou herd in northwest Alaska. Wildlife Monogr 135: 3-47.
[6]  Fryxell JM, Sinclair ARE (1988) Causes and consequences of migration by large herbivores. Trends Ecol Evol 3: 237-241. doi:10.1016/0169-5347(88)90166-8. PubMed: 21227239.
[7]  Nelson AA, Kauffman MJ, Middleton AD, Jimenez M, McWhirter D et al. (2012) Elk migration patterns and human activity influence wolf habitat use in the Greater Yellowstone Ecosystem. Ecol Appl 22: 2293-2307. doi:10.1890/11-1829.1.
[8]  Owen-Smith N (2008) Changing vulnerability to predation related to season and sex in an African ungulate assemblage. Oikos 117: 602–610. doi:10.1111/j.0030-1299.2008.16309.x.
[9]  Sand H, Wabakken P, Zimmermann B, Johansson O, Pedersen HC et al. (2008) Summer kill rates and predation pattern in wolf—moose system: can we rely on winter estimates? Oecologia 156: 53–64. doi:10.1007/s00442-008-0969-2. PubMed: 18270746.
[10]  Metz MC, Smith DW, Smith JA, Vucetich JA, Stahler DR et al. (2012) Seasonal patterns of predation for gray wolves in the multi-prey system of Yellowstone National Park. J Anim Ecol 81: 553–563. doi:10.1111/j.1365-2656.2011.01945.x. PubMed: 22260633.
[11]  Knopff KH, Knopff AA, Kortello A, Boyce MS (2010) Cougar kill rate and prey composition in a multiprey system. J Wild Manage 74: 1435-1447. doi:10.2193/2009-314.
[12]  Hornocker M, Negri S (2010) Cougar Ecology and Conservation. University of Chicago Press, Chicago.
[13]  Cooley HS, Robinson HS, Wielgus RB, Lambert CS (2008) Cougar prey selection in a white-tailed deer and mule deer community. J Wildl Manage 72: 99-106. doi:10.2193/2007-060.
[14]  Husseman JS, Murray DL, Power G, Mack C, Wenger CR et al. (2003) Assessing differential prey selection patterns between two sympatric large carnivores. Oikos 101: 591-601. doi:10.1034/j.1600-0706.2003.12230.x.
[15]  Atwood TC, Gese EM, Kunkel KE (2007) Comparative patterns of predation by cougars and recolonizing wolves in Montana's Madison Range. J Wild Manage 71: 1098-1106. doi:10.2193/2006-102.
[16]  Ruth TK, Murphy K (2010) Cougar–prey relationships. In: M. HornockerS. Negri. Cougar: ecology and conservation. Chicago: University of Chicago Press. pp. 138-162.
[17]  Sawyer H, Lindzey F, McWhirter D (2005) Mule deer and pronghorn migration in western Wyoming. Wild Soc B 33: 1266-1273. Available online at: doi:10.2193/0091-7648(2005)33[1266:MDAPM?I]2.0.CO; 2.
[18]  Smith BL (2007) Migratory behavior of hunted elk. Northwest Sci 81: 251-264. doi:10.3955/0029-344X-81.4.251.
[19]  Bartnick TR, Van Deelen TR, Quigley HB, Craighead D (2013) Variation in cougar predation habits during wolf recovery in the southern Greater Yellowstone Ecosystem. Can J Zool 91: 82-93. doi:10.1139/cjz-2012-0147.
[20]  Ballard WB, Lutz D, Keegan TW, Carpenter JH, deVos JC Jr (2001) Deer–predator relationships: a review of recent North American studies with emphasis on mule and black-tailed deer. Wildl Soc Bull 29: 99-115.
[21]  Eberhardt LL, White PJ, Garrott RA, Houston DB (2007) A seventy-year history of trends in Yellowstone's northern elk herd. J Wild Manage 71: 594-602. doi:10.2193/2005-770.
[22]  Elbroch LM, Wittmer HU (2013) The effects of puma prey selection and specialization on less abundant prey in Patagonia. J Mamm 94: 259-268. doi:10.1644/12-MAMM-A-041.1.
[23]  Quigley K (2000) Immobilization and biological sampling protocols. Hornocker Wildlife Institute/Wildlife Conservation Society, Moscow.
[24]  Sikes RS, Gannon WL, the Animal Care and Use Committee of the American Society of Mammalogists (2011) Guidelines of the American Society of Mammalogists for the use of wild mammals in research. J Mamm 92: 235-253. doi:10.1644/10-MAMM-F-355.1.
[25]  Knight DH (1996) Mountains and plains: the ecology of Wyoming landscapes. Yale University Press, New Haven.
[26]  Anderson CR, Lindzey FG (2003) Estimating cougar predation rates from GPS location clusters. J Wild Manage 67: 307-316. doi:10.2307/3802772.
[27]  Heffelfinger J (2010) Age criteria for Southwestern game animals. Special Report #19 Arizona Game and Fish Department, Arizona.
[28]  Knopff KH, Knopff AA, Warren MB, Boyce MS (2009) Evaluating global positioning system telemetry techniques for estimating cougar predation parameters. J Wild Manage 73: 586-597. doi:10.2193/2008-294.
[29]  Miller CS, Hebblewhite M, Petrunenko YK, Seryodkin IV, DeCesare NJ, et al. (2013) Estimating Amur tiger (Panthera tigris altaica) kill rates and potential consumption rates using global positioning system collars. J Mamm. In Press.
[30]  Ruth TK, Buotte PC, Quigley HB (2010) Comparing ground telemetry and Global Positioning System methods to determine cougar kill rates. J Wild Manage 74: 1122-1133. doi:10.2193/2009-058.
[31]  Hosmer DW, Lemshow S (2000) Applied Logistic Regression. John Wiley and Sons, New York.
[32]  Manly B, McDonald L, Thomas D (1993) Resource Selection by Animals. Chapman & Hall, New York.
[33]  Worton BJ (1989) Kernel methods for estimating the utilization distribution in home-range studies. Ecology 70: 164-168. doi:10.2307/1938423.
[34]  Kie JG, Matthiopoulos J, Fieberg J, Powell RA, Cagnacci F et al. (2010) The home-range concept: are traditional estimators still relevant with modern telemetry technology? Philos T R Soc B 365: 2221-2231. doi:10.1098/rstb.2010.0093. PubMed: 20566499.
[35]  Beyer HL (2009–2012) Geospatial Modeling Environment. Available: . /. Accessed 2012 May 3.
[36]  Loader CR (1999) Bandwidth selection: classical or plug-in? Ann Stat 27: 415-438. doi:10.1214/aos/1018031200.
[37]  Sappington JM, Longshore KM, Thompson DB (2007) Quantifying landscape ruggedness for animal habitat analysis: a case study using bighorn sheep in the Mojave Desert. J Wild Manage 71: 1419-1426. doi:10.2193/2005-723.
[38]  Stewart KM, Bowyer RT, Kie JG, Hurley MA (2010) Spatial distributions of mule deer and North American elk: resource partitioning in a sage-steppe environment. Am Midl Nat 163: 400-412. doi:10.1674/0003-0031-163.2.400.
[39]  SAS Institute Inc. (1990) SAS/STAT user’s guide, 6.03. SAS Institute Inc., Cary, NC.
[40]  Compton BW, Rhymer JM, McCollough M (2002) Habitat selection by wood turtles: an application of paired logistic regression. Ecology 83: 833-843. Available online at: doi:10.1890/0012-9658(2002)083[0833:HSBW?TC]2.0.CO; 2.
[41]  Boyce MS (2006) Scale for resource selection functions. Divers Distrib 12: 269-276. doi:10.1111/j.1366-9516.2006.00243.x.
[42]  Long RA, Kie JG, Bowyer RT, Hurley MA (2009) Resource selection and movements by female mule deer: effects of reproductive stage. Wild Biol 15: 288-298.
[43]  Lendrum PE, Anderson CR, Long RA, Kie JG, Bowyer RT (2012) Habitat selection by mule deer during migration: effects of landscape structure and natural-gas development. Ecosphere 3: art82.
[44]  Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information theoretic approach, 2nd ed. Springer-Verlag.
[45]  Boyce MS, Mao JS, Merrill EH, Fortin D, Turner MG et al. (2003) Scale and heterogeneity in habitat selection by elk in Yellowstone National Park. Ecoscience 10: 421-431.
[46]  Kauffman MJ, Varley N, Smith DW, Stahler DR, MacNulty DR et al. (2007) Landscape heterogeneity shapes predation in a newly restored predator-prey system. Ecol Lett 10: 690-700. doi:10.1111/j.1461-0248.2007.01059.x. PubMed: 17594424.
[47]  Kunkel KE, Ruth TK, Atwood TC, Pletscher DH, Hornocker MG (2013) Assessing the value of wolves and cougars as conservation surrogates by linking carnivore hunting success with landscape characteristics. Anim Conserv 16: 32-40. doi:10.1111/j.1469-1795.2012.00568.x.
[48]  Festa-Bianchet M, Coulson T, Gaillard JM, Hogg JT, Pelletier F (2006) Stochastic predation events and population persistence in bighorn sheep. Proc Biol Sci 273: 1537-1543. PubMed: 16777749.
[49]  Elbroch LM, Wittmer HU (2013) Nuisance ecology: do scavenging condors exact foraging costs on pumas in Patagonia? PLOS ONE 8: e53595. doi:10.1371/journal.pone.0053595. PubMed: 23301093.
[50]  Bump JK, Peterson RO, Vucetich JA (2009) Wolves modulate soil nutrient heterogeneity and foliar nitrogen by configuring the distribution of ungulate carcasses. Ecology 90: 3159-3167. doi:10.1890/09-0292.1. PubMed: 19967871.


comments powered by Disqus

Contact Us


微信:OALib Journal