All Title Author
Keywords Abstract

PLOS ONE  2013 

Effects of Reticuloendotheliosis Virus Infection on Cytokine Production in SPF Chickens

DOI: 10.1371/journal.pone.0083918

Full-Text   Cite this paper   Add to My Lib

Abstract:

Infection with reticuloendotheliosis virus (REV), a gammaretrovirus in the Retroviridae family, can result in immunosuppression and subsequent increased susceptibility to secondary infections. The effects of REV infection on expression of mRNA for cytokine genes in chickens have not been completely elucidated. In this study, using multiplex branched DNA (bDNA)?technology, we identified molecular mediators that participated in the regulation of the immune response during REV infection in chickens. Cytokine and chemokine mRNA expression levels were evaluated in the peripheral blood mononuclear cells (PBMCs). Expression levels of interleukin (IL)-4, IL-10, IL-13 and?tumor necrosis factor (TNF)-α were significantly up-regulated while interferon (IFN)-α, IFN-β, IFN-γ, IL-1β,IL-2, IL-3, IL-15, IL-17F, IL-18 and colony-stimulating factor (CSF)-1 were markedly decreased in PBMCs at all stages of infection. Compared with controls, REV infected chickens showed greater expression levels of IL-8 in PBMCs 21 and 28 days post infection. In addition, REV regulates host immunity as a suppressor of T cell proliferative responses. The results in this study will help us to understand the host immune response to virus pathogens.

References

[1]  Coffin JM (1996) Retrovirus restriction revealed. Nature 382: 762–763. doi:10.1038/382762a0. PubMed: 8752269.
[2]  Hoelzer JD, Franklin RB, Bose HR Jr. (1979) Transformation by reticuloendotheliosis virus: development of a focus assay and isolation of a nontransforming virus. Virology 93: 20–30. doi:10.1016/0042-6822(79)90272-1. PubMed: 219596.
[3]  Hoelzer JD, Lewis RB, Wasmuth CR, Bose HR Jr. (1980) Hematopoietic cell transformation by reticuloendotheliosis virus: characterization of the genetic defect. Virology 100: 462–474. doi:10.1016/0042-6822(80)90536-X. PubMed: 6243436.
[4]  Witter RL, Smith EJ, Crittenden LB (1981) Tolerance, viral shedding, and neoplasia in chickens infected with non-defective reticuloendotheliosis viruses. Avian Dis 25: 374–394. doi:10.2307/1589930. PubMed: 6266388.
[5]  Chen PY, Cui Z, Lee LF, Witter RL (1987) Serologic differences among nondefective reticuloendotheliosis viruses. Arch Virol 93: 233–245. doi:10.1007/BF01310977. PubMed: 3030238.
[6]  Cook MK (1969) Cultivation of a filterable agent associated with Marek's disease. J Natl Cancer Inst 43: 203–212. PubMed: 4307703.
[7]  Ludford CG, Purchase HG, Cox HW (1972) Duck infectious anemia virus associated with Plasmodium lophurae. Exp Parasitol 31: 29–38. doi:10.1016/0014-4894(72)90044-6. PubMed: 4622046.
[8]  Trager W (1959) A new virus of ducks interfering with development of malaria parasite (Plasmodium lophurae). Proc Soc Exp Biol Med 101: 578–582. doi:10.3181/00379727-101-25023. PubMed: 13675324.
[9]  Beemon KL, Faras AJ, Hasse AT, Duesberg PH, Maisel JE (1976) Genomic complexities of murine leukemia and sarcoma, reticuloendotheliosis, and visna viruses. J Virol 17: 525–537. PubMed: 176429.
[10]  Bohls RL, Linares JA, Gross SL, Ferro PJ, Silvy NJ et al. (2006) Phylogenetic analyses indicate little variation among reticuloendotheliosis viruses infecting avian species, including the endangered Attwater's prairie chicken. Virus Res 119: 187–194. doi:10.1016/j.virusres.2006.01.011. PubMed: 16497405.
[11]  Cui Z, Sun S, Zhang Z, Meng S (2009) Simultaneous endemic infections with subgroup J avian leukosis virus and reticuloendotheliosis virus in commercial and local breeds of chickens. Avian Pathol 38: 443–448. doi:10.1080/03079450903349188. PubMed: 19937533.
[12]  Davidson I, Shkoda I, Perk S (2008) Integration of the reticuloendotheliosis virus envelope gene into the poultry fowlpox virus genome is not universal. J Gen Virol 89: 2456–2460. doi:10.1099/vir.0.2008/001313-0. PubMed: 18796713.
[13]  Sun AJ, Xu XY, Petherbridge L, Zhao YG, Nair V et al. (2010) Functional evaluation of the role of reticuloendotheliosis virus long terminal repeat (LTR) integrated into the genome of a field strain of Marek's disease virus. Virology 397: 270–276. doi:10.1016/j.virol.2009.11.017. PubMed: 19962172.
[14]  Kawamura H, Wakabayashi T, Yamaguchi S, Taniguchi T, Takayanagi N (1976) Inoculation experiment of Marek's disease vaccine contaminated with a reticuloendotheliosis virus. Natl Inst Anim Health Q (Tokyo) 16: 135–140. PubMed: 189219.
[15]  Belardelli F (1995) Role of interferons and other cytokines in the regulation of the immune response. APMIS 103: 161–179. doi:10.1111/j.1699-0463.1995.tb01092.x. PubMed: 7538771.
[16]  Marzi M, Vigano A, Trabattoni D, Villa ML, Salvaggio A et al. (1996) Characterization of type 1 and type 2 cytokine production profile in physiologic and pathologic human pregnancy. Clin Exp Immunol 106: 127–133. PubMed: 8870710.
[17]  Markowski-Grimsrud CJ, Schat KA (2003) Infection with chicken anaemia virus impairs the generation of pathogen-specific cytotoxic T lymphocytes. Immunology 109: 283–294. doi:10.1046/j.1365-2567.2003.01643.x. PubMed: 12757624.
[18]  Zheng YS, Cui ZZ, Zhao P, Li HM, Liu CY et al. (2007) Effects of reticuloendotheliosis virus and Marek's disease virus infection and co-infection on IFN-gamma production in SPF chickens. J Vet Med Sci 69: 213–216. doi:10.1292/jvms.69.213. PubMed: 17339769.
[19]  Peterson KE, Robertson SJ, Portis JL, Chesebro B (2001) Differences in cytokine and chemokine responses during neurological disease induced by polytropic murine retroviruses Map to separate regions of the viral envelope gene. J Virol 75: 2848–2856. doi:10.1128/JVI.75.6.2848-2856.2001. PubMed: 11222710.
[20]  Epstein LG, Gendelman HE (1993) Human immunodeficiency virus type 1 infection of the nervous system: pathogenetic mechanisms. Ann Neurol 33: 429–436. doi:10.1002/ana.410330502. PubMed: 8498818.
[21]  Canales RD, Luo Y, Willey JC, Austermiller B, Barbacioru CC et al. (2006) Evaluation of DNA microarray results with quantitative gene expression platforms. Nat Biotechnol 24: 1115–1122. doi:10.1038/nbt1236. PubMed: 16964225.
[22]  Xue M, Shi X, Zhang J, Zhao Y, Cui H et al. (2012) Identification of a conserved B-cell epitope on reticuloendotheliosis virus envelope protein by screening a phage-displayed random peptide library. PLOS ONE 7: e49842. doi:10.1371/journal.pone.0049842. PubMed: 23185456.
[23]  Withanage GS, Kaiser P, Wigley P, Powers C, Mastroeni P et al. (2004) Rapid expression of chemokines and proinflammatory cytokines in newly hatched chickens infected with Salmonella enterica serovar typhimurium. Infect Immun 72: 2152–2159. doi:10.1128/IAI.72.4.2152-2159.2004. PubMed: 15039338.
[24]  Kidd P (2003) Th1/Th2 balance: the hypothesis, its limitations, and implications for health and disease. Altern Med Rev 8: 223–246. PubMed: 12946237.
[25]  Hwang ES, Szabo SJ, Schwartzberg PL, Glimcher LH (2005) T helper cell fate specified by kinase-mediated interaction of T-bet with GATA-3. Science 307: 430–433. doi:10.1126/science.1103336. PubMed: 15662016.
[26]  Becker Y (2004) The changes in the T helper 1 (Th1) and T helper 2 (Th2) cytokine balance during HIV-1 infection are indicative of an allergic response to viral proteins that may be reversed by Th2 cytokine inhibitors and immune response modifiers--a review and hypothesis. Virus Genes 28: 5–18. doi:10.1023/B:VIRU.0000012260.32578.72. PubMed: 14739648.
[27]  Avery S, Rothwell L, Degen WD, Schijns VE, Young J et al. (2004) Characterization of the first nonmammalian T2 cytokine gene cluster: the cluster contains functional single-copy genes for IL-3, IL-4, IL-13, and GM-CSF, a gene for IL-5 that appears to be a pseudogene, and a gene encoding another cytokinelike transcript, KK34. J Interferon Cytokine Res 24: 600–610. doi:10.1089/jir.2004.24.600. PubMed: 15626157.
[28]  de Waal Malefyt R, Haanen J, Spits H, Roncarolo MG, te Velde A et al. (1991) Interleukin 10 (IL-10) and viral IL-10 strongly reduce antigen-specific human T cell proliferation by diminishing the antigen-presenting capacity of monocytes via downregulation of class II major histocompatibility complex expression. J Exp Med 174: 915–924. doi:10.1084/jem.174.4.915. PubMed: 1655948.
[29]  Kim R, Emi M, Tanabe K (2005) Cancer cell immune escape and tumor progression by exploitation of anti-inflammatory and pro-inflammatory responses. Cancer Biol Ther 4: 924–933. doi:10.4161/cbt.4.9.2101. PubMed: 16177562.
[30]  Mocellin S, Wang E, Marincola FM (2001) Cytokines and immune response in the tumor microenvironment. J Immunother 24: 392–407. doi:10.1097/00002371-200109000-00002. PubMed: 1169669511685082.
[31]  Conrad CT, Ernst NR, Dummer W, Br?cker EB, Becker JC (1999) Differential expression of transforming growth factor beta 1 and interleukin 10 in progressing and regressing areas of primary melanoma. J Exp Clin Cancer Res 18: 225–232. PubMed: 10464712.
[32]  Yue FY, Dummer R, Geertsen R, Hofbauer G, Laine E et al. (1997) Interleukin-10 is a growth factor for human melanoma cells and down-regulates HLA class-I, HLA class-II and ICAM-1 molecules. Int J Cancer 71: 630–637. doi:10.1002/(SICI)1097-0215(19970516)71:4. PubMed: 9178819.
[33]  Marincola FM, Jaffee EM, Hicklin DJ, Ferrone S (2000) Escape of human solid tumors from T-cell recognition: molecular mechanisms and functional significance. Adv Immunol 74: 181–273. PubMed: 10605607.
[34]  Moore KW, de Waal Malefyt R, Coffman RL, O'Garra A (2001) Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 19: 683–765. doi:10.1146/annurev.immunol.19.1.683. PubMed: 11244051.
[35]  Becker Y (2004) HIV-1 gp120 binding to dendritic cell receptors mobilize the virus to the lymph nodes, but the induced IL-4 synthesis by FcepsilonRI+ hematopoietic cells damages the adaptive immunity--a review, hypothesis, and implications. Virus Genes 29: 147–165. doi:10.1023/B:VIRU.0000032797.43537.d3. PubMed: 15215692.
[36]  Osakwe CE, Bleotu C, Chifiriuc MC, Grancea C, O?elea D et al. (2010) TH1/TH2 cytokine levels as an indicator for disease progression in human immunodeficiency virus type 1 infection and response to antiretroviral therapy. Roum Arch Microbiol Immunol 69: 24–34. PubMed: 21053781.
[37]  Sundick RS, Gill-Dixon C (1997) A cloned chicken lymphokine homologous to both mammalian IL-2 and IL-15. J Immunol 159: 720–725. PubMed: 9218587.
[38]  Lillehoj HS, Min W, Choi KD, Babu US, Burnside J et al. (2001) Molecular, cellular, and functional characterization of chicken cytokines homologous to mammalian IL-15 and IL-2. Vet Immunol Immunopathol 82: 229–244. doi:10.1016/S0165-2427(01)00360-9. PubMed: 11587737.
[39]  Isaacs A, Lindenmann J (1957) Virus interference. I. Interferon - Proc R Soc Lond B Biol Sci 147: 258–267. doi:10.1098/rspb.1957.0048.
[40]  Ortegel JW, Staren ED, Faber LP, Warren WH, Braun DP (2002) Modulation of tumor-infiltrating lymphocyte cytolytic activity against human non-small cell lung cancer. Lung Cancer 36: 17–25. doi:10.1016/S0169-5002(01)00472-X. PubMed: 11891029.
[41]  Lüscher U, Filgueira L, Juretic A, Zuber M, Lüscher NJ et al. (1994) The pattern of cytokine gene expression in freshly excised human metastatic melanoma suggests a state of reversible anergy of tumor-infiltrating lymphocytes. Int J Cancer 57: 612–619. doi:10.1002/ijc.2910570428. PubMed: 8181865.
[42]  Jarosinski KW, Njaa BL, O'Connell PH, Schat KA (2005) Pro-inflammatory responses in chicken spleen and brain tissues after infection with very virulent plus Marek's disease virus. Viral Immunol 18: 148–161. doi:10.1089/vim.2005.18.148. PubMed: 15802959.
[43]  Dinarello CA, Fantuzzi G (2003) Interleukin-18 and host defense against infection. J Infect Dis 187 Suppl 2: S370–S384. doi:10.1086/374751. PubMed: 12792854.
[44]  Metcalf D (1989) The molecular control of cell division, differentiation commitment and maturation in haemopoietic cells. Nature 339: 27–30. doi:10.1038/339027a0. PubMed: 2469962.
[45]  Hamilton JA (1993) Rheumatoid arthritis: opposing actions of haemopoietic growth factors and slow-acting anti-rheumatic drugs. Lancet 342: 536–539. doi:10.1016/0140-6736(93)91653-4. PubMed: 8102674.
[46]  Aukrust P, Liabakk NB, Müller F, Lien E, Espevik T et al. (1994) Serum levels of tumor necrosis factor-alpha (TNF alpha) and soluble TNF receptors in human immunodeficiency virus type 1 infection--correlations to clinical, immunologic, and virologic parameters. J Infect Dis 169: 420–424. doi:10.1093/infdis/169.2.420. PubMed: 7906293.
[47]  Calzascia T, Pellegrini M, Hall H, Sabbagh L, Ono N et al. (2007) TNF-alpha is critical for antitumor but not antiviral T cell immunity in mice. J Clin Invest 117: 3833–3845. PubMed: 17992258.
[48]  Ebnet K, Vestweber D (1999) Molecular mechanisms that control leukocyte extravasation: the selectins and the chemokines. Histochem Cell Biol 112: 1–23. doi:10.1007/s004180050387. PubMed: 10461808.
[49]  Murtaugh MP, Baarsch MJ, Zhou Y, Scamurra RW, Lin G (1996) Inflammatory cytokines in animal health and disease. Vet Immunol Immunopathol 54: 45–55. doi:10.1016/S0165-2427(96)05698-X. PubMed: 8988847.
[50]  Baggiolini M, Dewald B, Moser B (1997) Human chemokines: an update. Annu Rev Immunol 15: 675–705. doi:10.1146/annurev.immunol.15.1.675. PubMed: 9143704.
[51]  Khatri M, Sharma JM (2006) Infectious bursal disease virus infection induces macrophage activation via p38 MAPK and NF-kappaB pathways. Virus Res 118: 70–77. doi:10.1016/j.virusres.2005.11.015. PubMed: 16388870.
[52]  Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet 357: 539–545. doi:10.1016/S0140-6736(00)04046-0. PubMed: 11229684.
[53]  Knudsen BS, Allen AN, McLerran DF, Vessella RL, Karademos J et al. (2008) Evaluation of the branched-chain DNA assay for measurement of RNA in formalin-fixed tissues. J Mol Diagn 10: 169–176. doi:10.2353/jmoldx.2008.070127. PubMed: 18276773.

Full-Text

comments powered by Disqus