All Title Author
Keywords Abstract

PLOS ONE  2013 

Mutational and Topological Analysis of the Escherichia coli BamA Protein

DOI: 10.1371/journal.pone.0084512

Full-Text   Cite this paper   Add to My Lib


The multi-protein β-barrel assembly machine (BAM) of Escherichia coli is responsible for the folding and insertion of β-barrel containing integral outer membrane proteins (OMPs) into the bacterial outer membrane. An essential component of this complex is the BamA protein, which binds unfolded β-barrel precursors via the five polypeptide transport-associated (POTRA) domains in its N-terminus. The C-terminus of BamA contains a β-barrel domain, which tethers BamA to the outer membrane and is also thought to be involved in OMP insertion. Here we mutagenize BamA using linker scanning mutagenesis and demonstrate that all five POTRA domains are essential for BamA protein function in our experimental system. Furthermore, we generate a homology based model of the BamA β-barrel and test our model using insertion mutagenesis, deletion analysis and immunofluorescence to identify β-strands, periplasmic turns and extracellular loops. We show that the surface-exposed loops of the BamA β-barrel are essential.


[1]  Hagan CL, Silhavy TJ, Kahne D (2011) β-Barrel membrane protein assembly by the Bam complex. Annu Rev Biochem 80: 189–210.
[2]  Knowles TJ, Scott-Tucker A, Overduin M, Henderson IR (2009) Membrane protein architects: the role of the BAM complex in outer membrane protein assembly. Nat Rev Microbiol 7: 206–214.
[3]  Voulhoux R, Bos MP, Geurtsen J, Mols M, Tommassen J (2003) Role of a highly conserved bacterial protein in outer membrane protein assembly. Science 299: 262–265.
[4]  Tommassen J (2010) Assembly of outer-membrane proteins in bacteria and mitochondria. Microbiology 156: 2587–2596.
[5]  Anwari K, Webb CT, Poggio S, Perry AJ, Belousoff M, et al. (2012) The evolution of new lipoprotein subunits of the bacterial outer membrane BAM complex. Mol Microbiol 84: 832–844.
[6]  Kim S, Malinverni JC, Sliz P, Silhavy TJ, Harrison SC, et al. (2007) Structure and function of an essential component of the outer membrane protein assembly machine. Science 317: 961–964.
[7]  Bennion D, Charlson ES, Coon E, Misra R (2010) Dissection of β-barrel outer membrane protein assembly pathways through characterizing BamA POTRA 1 mutants of Escherichia coli. Mol Microbiol 77: 1153–1171.
[8]  Gatzeva-Topalova PZ, Walton TA, Sousa MC (2008) Crystal structure of YaeT: conformational flexibility and substrate recognition. Structure 16: 1873–1881.
[9]  Knowles TJ, Jeeves M, Bobat S, Dancea F, McClelland D, et al. (2008) Fold and function of polypeptide transport-associated domains responsible for delivering unfolded proteins to membranes. Mol Microbiol 68: 1216–1227.
[10]  Gatzeva-Topalova PZ, Warner LR, Pardi A, Sousa MC (2010) Structure and flexibility of the complete periplasmic domain of BamA: the protein insertion machine of the outer membrane. Structure 18: 1492–1501.
[11]  Zhang H, Gao ZQ, Hou HF, Xu JH, Li LF, et al. (2011) High-resolution structure of a new crystal form of BamA POTRA4-5 from Escherichia coli. Acta Crystallogr Sect F Struct Biol Cryst Commun 67: 734–738.
[12]  Patel GJ, Kleinschmidt JH (2013) The Lipid Bilayer-Inserted Membrane Protein BamA of Escherichia coli Facilitates Insertion and Folding of Outer Membrane Protein A from Its Complex with Skp. Biochemistry 52: 3974–3986.
[13]  Clantin B, Delattre AS, Rucktooa P, Saint N, Meli AC, et al. (2007) Structure of the membrane protein FhaC: a member of the Omp85-TpsB transporter superfamily. Science 317: 957–961.
[14]  Delattre AS, Clantin B, Saint N, Locht C, Villeret V, et al. (2010) Functional importance of a conserved sequence motif in FhaC, a prototypic member of the TpsB/Omp85 superfamily. FEBS J 277: 4755–4765.
[15]  Leonard-Rivera M, Misra R (2012) Conserved residues of the putative L6 loop of Escherichia coli BamA play a critical role in the assembly of β-barrel outer membrane proteins, including that of BamA itself. J Bacteriol 194: 4662–4668.
[16]  Rigel NW, Ricci DP, Silhavy TJ (2013) Conformation-specific labeling of BamA and suppressor analysis suggest a cyclic mechanism for β-barrel assembly in Escherichia coli. Proc Natl Acad Sci U S A 110: 5151–5156.
[17]  Noinaj N, Kuszak AJ, Gumbart JC, Lukacik P, Chang H, et al. (2013) Structural insight into the biogenesis of β-barrel membrane proteins. Nature 501: 385–390.
[18]  Sambrook J (2001) Molecular cloning : a laboratory manual/Joseph Sambrook, David W. Russell; Russell DW, Cold Spring Harbor L, editors. Cold Spring Harbor, N.Y: Cold Spring Harbor Laboratory.
[19]  Squire DJP, Xu M, Cole JA, Busby SJW, Browning DF (2010) Competition between NarL-dependent activation and Fis-dependent repression controls expression from the Escherichia coli yeaR and ogt promoters. Bioch J 420: 249–257.
[20]  Lehr U, Schutz M, Oberhettinger P, Ruiz-Perez F, Donald JW, et al. (2010) C-terminal amino acid residues of the trimeric autotransporter adhesin YadA of Yersinia enterocolitica are decisive for its recognition and assembly by BamA. Mol Microbiol 78: 932–946.
[21]  Sarkar G, Sommer SS (1990) The “megaprimer” method of site-directed mutagenesis. Biotechniques 8: 404–407.
[22]  Rossiter AE, Browning DF, Leyton DL, Johnson MD, Godfrey RE, et al. (2011) Transcription of the plasmid-encoded toxin gene from Enteroaggregative Escherichia coli is regulated by a novel co-activation mechanism involving CRP and Fis. Mol Microbiol 81: 179–191.
[23]  Knowles TJ, Browning DF, Jeeves M, Maderbocus R, Rajesh S, et al. (2011) Structure and function of BamE within the outer membrane and the β-barrel assembly machine. EMBO Rep 12: 123–128.
[24]  Raghunathan D, Wells TJ, Morris FC, Shaw RK, Bobat S, et al. (2011) SadA, a trimeric autotransporter from Salmonella enterica serovar Typhimurium, can promote biofilm formation and provides limited protection against infection. Infect Immun 79: 4342–4352.
[25]  Marani P, Wagner S, Baars L, Genevaux P, de Gier JW, et al. (2006) New Escherichia coli outer membrane proteins identified through prediction and experimental verification. Protein Sci 15: 884–889.
[26]  Rossiter AE, Leyton DL, Tveen-Jensen K, Browning DF, Sevastsyanovich Y, et al. (2011) The essential β-barrel assembly machinery complex components BamD and BamA are required for autotransporter biogenesis. J Bacteriol 193: 4250–4253.
[27]  Leyton DL, Sevastsyanovich YR, Browning DF, Rossiter AE, Wells TJ, et al. (2011) Size and conformation limits to secretion of disulfide-bonded loops in autotransporter proteins. J Biol Chem 286: 42283–42291.
[28]  Taly JF, Magis C, Bussotti G, Chang JM, Di Tommaso P, et al. (2011) Using the T-Coffee package to build multiple sequence alignments of protein, RNA, DNA sequences and 3D structures. Nat Protoc 6: 1669–1682.
[29]  Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30: 772–780.
[30]  Karplus K (2009) SAM-T08, HMM-based protein structure prediction. Nucleic Acids Res 37: W492–497.
[31]  Kallberg M, Wang H, Wang S, Peng J, Wang Z, et al. (2012) Template-based protein structure modeling using the RaptorX web server. Nat Protoc 7: 1511–1522.
[32]  Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5: 725–738.
[33]  Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and development of Coot. Acta Crystallogr D Biol Crystallogr 66: 486–501.
[34]  Gouet P, Robert X, Courcelle E (2003) ESPript/ENDscript: Extracting and rendering sequence and 3D information from atomic structures of proteins. Nucleic Acids Res 31: 3320–3323.
[35]  Schrodinger LLC (2010) The PyMOL Molecular Graphics System, Version 1.3r1.
[36]  Ruiz N, Wu T, Kahne D, Silhavy TJ (2006) Probing the barrier function of the outer membrane with chemical conditionality. ACS Chem Biol 1: 385–395.
[37]  Tellez R Jr, Misra R (2012) Substitutions in the BamA β-barrel domain overcome the conditional lethal phenotype of a ΔbamB ΔbamE strain of Escherichia coli. J Bacteriol 194: 317–324.
[38]  Fairman JW, Noinaj N, Buchanan SK (2011) The structural biology of β-barrel membrane proteins: a summary of recent reports. Curr Opin Struct Biol 21: 523–531.
[39]  Leyton DL, Rossiter AE, Henderson IR (2012) From self sufficiency to dependence: mechanisms and factors important for autotransporter biogenesis. Nat Rev Microbiol 10: 213–225.
[40]  Oberhettinger P, Schutz M, Leo JC, Heinz N, Berger J, et al. (2012) Intimin and invasin export their C-terminus to the bacterial cell surface using an inverse mechanism compared to classical autotransport. PLoS One 7: e47069.
[41]  Aoki SK, Malinverni JC, Jacoby K, Thomas B, Pamma R, et al. (2008) Contact-dependent growth inhibition requires the essential outer membrane protein BamA (YaeT) as the receptor and the inner membrane transport protein AcrB. Mol Microbiol 70: 323–340.
[42]  Bos MP, Robert V, Tommassen J (2007) Functioning of outer membrane protein assembly factor Omp85 requires a single POTRA domain. EMBO Rep 8: 1149–1154.
[43]  Meli AC, Hodak H, Clantin B, Locht C, Molle G, et al. (2006) Channel properties of TpsB transporter FhaC point to two functional domains with a C-terminal protein-conducting pore. J Biol Chem 281: 158–166.


comments powered by Disqus