All Title Author
Keywords Abstract

PLOS ONE  2013 

Ligand Recognition by the TPR Domain of the Import Factor Toc64 from Arabidopsis thaliana

DOI: 10.1371/journal.pone.0083461

Full-Text   Cite this paper   Add to My Lib

Abstract:

The specific targeting of protein to organelles is achieved by targeting signals being recognised by their cognate receptors. Cytosolic chaperones, bound to precursor proteins, are recognized by specific receptors of the import machinery enabling transport into the specific organelle. The aim of this study was to gain greater insight into the mode of recognition of the C-termini of Hsp70 and Hsp90 chaperones by the Tetratricopeptide Repeat (TPR) domain of the chloroplast import receptor Toc64 from Arabidopsis thaliana (At). The monomeric TPR domain binds with 1:1 stoichiometry in similar micromolar affinity to both Hsp70 and Hsp90 as determined by isothermal titration calorimetry (ITC). Mutations of the terminal EEVD motif caused a profound decrease in affinity. Additionally, this study considered the contributions of residues upstream as alanine scanning experiments of these residues showed reduced binding affinity. Molecular dynamics simulations of the TPR domain helices upon peptide binding predicted that two helices within the TPR domain move backwards, exposing the cradle surface for interaction with the peptide. Our findings from ITC and molecular dynamics studies suggest that AtToc64_TPR does not discriminate between C-termini peptides of Hsp70 and Hsp90.

References

[1]  Grove TZ, Cortajarena AL, Regan L (2008) Ligand binding by repeat proteins: natural and designed. Curr Opin Struct Biol 18: 507–515.
[2]  Morlot C, Thielens NM, Ravelli RBG, Hemrika W, Romijn RA, et al. (2007) Structural insights into the Slit-Robo complex. Proceedings of the National Academy of Sciences 104: 14923–14928.
[3]  Boersma YL, Plückthun A (2011) DARPins and other repeat protein scaffolds: advances in engineering and applications. Current Opinion in Biotechnology 22: 849–857.
[4]  Zeytuni N, Zarivach R (2012) Structural and Functional Discussion of the Tetra-Trico-Peptide Repeat, a Protein Interaction Module. Structure (London, England : 1993) 20: 397–405.
[5]  Brinker A, Scheufler C, Von Der Mulbe F, Fleckenstein B, Herrmann C, et al. (2002) Ligand discrimination by TPR domains. Relevance and selectivity of EEVD-recognition in Hsp70×Hop×Hsp90 complexes. J Biol Chem 277: 19265–19275.
[6]  Scheufler C, Brinker A, Bourenkov G, Pegoraro S, Moroder L, et al. (2000) Structure of TPR domain-peptide complexes: critical elements in the assembly of the Hsp70-Hsp90 multichaperone machine. Cell 101: 199–210.
[7]  Allan RK, Ratajczak T (2011) Versatile TPR domains accommodate different modes of target protein recognition and function. Cell Stress Chaperones 16: 353–367.
[8]  Kajander T, Cortajarena AL, Main ER, Mochrie SG, Regan L (2005) A new folding paradigm for repeat proteins. J Am Chem Soc 127: 10188–10190.
[9]  D'Andrea LD, Regan L (2003) TPR proteins: the versatile helix. Trends in Biochemical Sciences 28: 655–662.
[10]  Sampathkumar P, Roach C, Michels PA, Hol WG (2008) Structural insights into the recognition of peroxisomal targeting signal 1 by Trypanosoma brucei peroxin 5. J Mol Biol 381: 867–880.
[11]  Lunelli M, Lokareddy RK, Zychlinsky A, Kolbe M (2009) IpaB-IpgC interaction defines binding motif for type III secretion translocator. Proc Natl Acad Sci U S A 106: 9661–9666.
[12]  Zeytuni N, Ozyamak E, Ben-Harush K, Davidov G, Levin M, et al. (2011) Self-recognition mechanism of MamA, a magnetosome-associated TPR-containing protein, promotes complex assembly. Proc Natl Acad Sci U S A 108: E480–487.
[13]  Zhang Z, Kulkarni K, Hanrahan SJ, Thompson AJ, Barford D (2010) The APC/C subunit Cdc16/Cut9 is a contiguous tetratricopeptide repeat superhelix with a homo-dimer interface similar to Cdc27. EMBO J 29: 3733–3744.
[14]  Schultz J, Marshall-Carlson L, Carlson M (1990) The N-terminal TPR region is the functional domain of SSN6, a nuclear phosphoprotein of Saccharomyces cerevisiae. Mol Cell Biol 10: 4744–4756.
[15]  Sikorski RS, Boguski MS, Goebl M, Hieter P (1990) A repeating amino acid motif in CDC23 defines a family of proteins and a new relationship among genes required for mitosis and RNA synthesis. Cell 60: 307–317.
[16]  Hirano T, Kinoshita N, Morikawa K, Yanagida M (1990) Snap helix with knob and hole: essential repeats in S. pombe nuclear protein nuc2+. Cell 60: 319–328.
[17]  Baker MJ, Frazier AE, Gulbis JM, Ryan MT (2007) Mitochondrial protein-import machinery: correlating structure with function. Trends in Cell Biology 17: 456–464.
[18]  Mirus O, Bionda T, Haeseler A, Schleiff E (2009) Evolutionarily evolved discriminators in the 3-TPR domain of the Toc64 family involved in protein translocation at the outer membrane of chloroplasts and mitochondria. J Mol Model 15: 971–982.
[19]  Brocard C, Hartig A (2006) Peroxisome targeting signal 1: Is it really a simple tripeptide? Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1763: 1565–1573.
[20]  Li HM, Chiu CC (2010) Protein transport into chloroplasts. Annu Rev Plant Biol 61: 157–180.
[21]  Hinnah SC, Wagner R, Sveshnikova N, Harrer R, Soll J (2002) The Chloroplast Protein Import Channel Toc75: Pore Properties and Interaction with Transit Peptides. Biophysical Journal 83: 899–911.
[22]  Smith MD, Rounds CM, Wang F, Chen K, Afitlhile M, et al. (2004) atToc159 is a selective transit peptide receptor for the import of nucleus-encoded chloroplast proteins. J Cell Biol 165: 323–334.
[23]  Koenig P, Oreb M, H?fle A, Kaltofen S, Rippe K, et al. (2008) The GTPase Cycle of the Chloroplast Import Receptors Toc33/Toc34: Implications from Monomeric and Dimeric Structures. Structure 16: 585–596.
[24]  Sohrt K, Soll J (2000) Toc64, a new component of the protein translocon of chloroplasts. J Cell Biol 148: 1213–1221.
[25]  Qbadou S, Becker T, Bionda T, Reger K, Ruprecht M, et al. (2007) Toc64 - A Preprotein-receptor at the Outer Membrane with Bipartide Function. J Mol Biol 367: 1330–1346.
[26]  Cheng CY, Jarymowycz VA, Cortajarena AL, Regan L, Stone MJ (2006) Repeat Motions and Backbone Flexibility in Designed Proteins with Different Numbers of Identical Consensus Tetratricopeptide Repeats?. Biochemistry 45: 12175–12183.
[27]  Qbadou S, Becker T, Mirus O, Tews I, Soll J, et al. (2006) The molecular chaperone Hsp90 delivers precursor proteins to the chloroplast import receptor Toc64. EMBO J 25: 1836–1847.
[28]  Qbadou S, Becker T, Mirus O, Tews I, Soll J, et al. (2006) The molecular chaperone Hsp90 delivers precursor proteins to the chloroplast import receptor Toc64. EMBO J 25: 1836–1847.
[29]  Whitmore L, Wallace BA (2008) Protein secondary structure analyses from circular dichroism spectroscopy: methods and reference databases. Biopolymers 89: 392–400.
[30]  Compton LA, Johnson WC Jr (1986) Analysis of protein circular dichroism spectra for secondary structure using a simple matrix multiplication. Anal Biochem 155: 155–167.
[31]  Manavalan P, Johnson WC Jr (1987) Variable selection method improves the prediction of protein secondary structure from circular dichroism spectra. Anal Biochem 167: 76–85.
[32]  Sreerama N, Woody RW (2000) Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal Biochem 287: 252–260.
[33]  Greenfield N, Fasman GD (1969) Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry 8: 4108–4116.
[34]  Ralston G Introduction to analytical ultracentrifuagtion. 1–99.
[35]  Laue TM, Shah BD, Ridgeway TM, Pelletier SL (1992) Computer-aided interpretation of analytical sedimentation data for proteins. In: Harding SE, Rowe AJ, Horton JC, editors. Analytical ultracentrifugation in biochemistry and polymer science. Cambridge, UK: Royal Society of Chemistry. pp. 90–125.
[36]  Roy A, Xu D, Poisson J, Zhang Y (2011) A protocol for computer-based protein structure and function prediction. J Vis Exp e3259.
[37]  Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5: 725–738.
[38]  Venclovas C, Margelevicius M (2005) Comparative modeling in CASP6 using consensus approach to template selection, sequence-structure alignment, and structure assessment. Proteins 61(Suppl 7): 99–105.
[39]  London N, Raveh B, Cohen E, Fathi G, Schueler-Furman O (2011) Rosetta FlexPepDock web server–high resolution modeling of peptide-protein interactions. Nucleic Acids Res 39: W249–253.
[40]  Raveh B, London N, Schueler-Furman O (2010) Sub-angstrom modeling of complexes between flexible peptides and globular proteins. Proteins 78: 2029–2040.
[41]  Lovell SC, Davis IW, Arendall WB 3rd, de Bakker PI, Word JM, et al. (2003) Structure validation by Calpha geometry: phi, psi and Cbeta deviation. Proteins 50: 437–450.
[42]  Goetz AW, Williamson MJ, Xu D, Polle D, Grand SL, et al. (2012) Routine microsecond molecular dynamics simulations with AMBER - PartI: Generalized Born. Journal of Chemical Theory and Computation 8: 1542–1555.
[43]  Case DA, Darden TA, Cheatham TE, Simmerling CL, Wang J, et al.. (2012) AMBER12. University of California, San Francisco.
[44]  Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW (1983) Comparision of simple potential functions for simulating liquid water. Journal of Chemical Physics 79: 1407–1413.
[45]  Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. Journal of Computational Physics 23: 327–341.
[46]  Salomon-Ferrer R, Goetz AW, Poole D, Grand LS, Walker RC (2012) Routine microsecond molecular dynamics simulations with AMBER- PartII: Particle Mesh Ewald. Journal of Chemical Theory and Computation (in Prep)..
[47]  McDonald IK, Thornton JM (1994) Satisfying hydrogen bonding potential in proteins. Jounal of Molecular Biology 238: 777–793.
[48]  Hubbard SJ, Thornton JM (1993) NACCESS. London: Department of Biochemistry and Molecular Biology University College.
[49]  Kollman PA, Massova I, Reyers C, Kuhn B, Huo S, et al. (2000) Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Accounts of Chemical Research 33: 889–897.
[50]  Srinivasan J, Miller J, Kollman PA, Case DA (1998) Continuum solvent studies of the stability of RNA hairpin loops and helices. J Biomol Struct Dyn 16: 671–682.
[51]  Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci U S A 98: 10037–10041.
[52]  Wallace AC, Laskowski RA, Thornton JM (1995) LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng 8: 127–134.
[53]  Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14: 33–38, 27–38.
[54]  Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22: 2577–2637.
[55]  Amadei A, Linssen ABM, Berendsen HJC (1993) Essential dynamics of proteins. Proteins 17: 412–425.
[56]  Pronk S, Pall S, Schulz R, Larsson P, Bjelkmar P, et al. (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29: 845–854.
[57]  Grant BJ, Rodrigues AP, ElSawy KM, McCammon JA, Caves LS (2006) Bio3d: an R package for the comparative analysis of protein structures. Bioinformatics 22: 2695–2696.
[58]  Ichiye T, Karplus M (1991) Collective motions in proteins: a covariance analysis of atomic fluctuations in molecular dynamics and normal mode simulations. Proteins 11: 205–217.
[59]  Harte WE Jr, Swaminathan S, Mansuri MM, Martin JC, Rosenberg IE, et al. (1990) Domain communication in the dynamical structure of human immunodeficiency virus 1 protease. Proc Natl Acad Sci U S A 87: 8864–8868.
[60]  DeLano WL (2002) The PyMOL molecular graphics system. DeLano Scientific, San Carlos, CA, USA.
[61]  Buchan DW, Ward SM, Lobley AE, Nugent TC, Bryson K, et al. (2010) Protein annotation and modelling servers at University College London. Nucleic Acids Res 38: W563–568.
[62]  Jones DT (1999) Protein secondary structure prediction based on position-specific scoring matrices. Jounal of Molecular Biology 292: 195–202.
[63]  Lebowitz J, Lewis MS, Schuck P (2002) Modern analytical ultracentrifugation in protein science: a tutorial review. Protein Sci 11: 2067–2079.
[64]  Campoy AV, Freire E (2006) Isothermal titration calorimetry to determine association constants for high affinity ligands. Nature Protocols 1: 186–191.
[65]  Freyer MW, Lewis EA (2008) Isothermal titration calorimetry: Experimental design, data analysis, probing macromolecular/ligand binding and kinetic interactions. Methods in cell biology 84: 79–113.
[66]  Deng Y, Roux B (2009) Computations of standard binding free energies with molecular dynamics simulations. J Phys Chem B 113: 2234–2246.
[67]  Krieger F, Moglich A, Kiefhaber T (2005) Effect of proline and glycine residues on dynamics and barriers of loop formation in polypeptide chains. J Am Chem Soc 127: 3346–3352.
[68]  Trevino SR, Schaefer S, Scholtz JM, Pace CN (2007) Increasing protein conformational stability by optimizing beta-turn sequence. J Mol Biol 373: 211–218.
[69]  Hainzl O, Wegele H, Richter K, Buchner J (2004) Cns1 is an activator of the Ssa1 ATPase activity. J Biol Chem 279: 23267–23273.

Full-Text

comments powered by Disqus