All Title Author
Keywords Abstract

PLOS ONE  2014 

Mechanisms of the Scaffold Subunit in Facilitating Protein Phosphatase 2A Methylation

DOI: 10.1371/journal.pone.0086955

Full-Text   Cite this paper   Add to My Lib

Abstract:

The function of the biologically essential protein phosphatase 2A (PP2A) relies on formation of diverse heterotrimeric holoenzymes, which involves stable association between PP2A scaffold (A) and catalytic (C or PP2Ac) subunits and binding of variable regulatory subunits. Holoenzyme assembly is highly regulated by carboxyl methylation of PP2Ac-tail; methylation of PP2Ac and association of the A and C subunits are coupled to activation of PP2Ac. Here we showed that PP2A-specific methyltransferase, LCMT-1, exhibits a higher activity toward the core enzyme (A–C heterodimer) than free PP2Ac, and the A-subunit facilitates PP2A methylation via three distinct mechanisms: 1) stabilization of a proper protein fold and an active conformation of PP2Ac; 2) limiting the space of PP2Ac-tail movement for enhanced entry into the LCMT-1 active site; and 3) weak electrostatic interactions between LCMT-1 and the N-terminal HEAT repeats of the A-subunit. Our results revealed a new function and novel mechanisms of the A-subunit in PP2A methylation, and coherent control of PP2A activity, methylation, and holoenzyme assembly.

References

[1]  Shi Y (2009) Serine/threonine phosphatases: mechanism through structure. Cell 139: 468–484.
[2]  Eichhorn PJ, Creyghton MP, Bernards R (2009) Protein phosphatase 2A regulatory subunits and cancer. Biochim Biophys Acta 1795: 1–15.
[3]  Janssens V, Goris J (2001) Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochem J 353: 417–439.
[4]  Virshup DM (2000) Protein phosphatase 2A: a panoply of enzymes. Curr Opin Cell Biol 12: 180–185.
[5]  Tolstykh T, Lee J, Vafai S, Stock JB (2000) Carboxyl methylation regulates phosphoprotein phosphatase 2A by controlling the association of regulatory B subunits. Embo J 19: 5682–5691.
[6]  Ogris E, Gibson DM, Pallas DC (1997) Protein phosphatase 2A subunit assembly: the catalytic subunit carboxy terminus is important for binding cellular B subunit but not polyomavirus middle tumor antigen. Oncogene 15: 911–917.
[7]  Bryant JC, Westphal RS, Wadzinski BE (1999) Methylated C-terminal leucine residue of PP2A catalytic subunit is important for binding of regulatory Balpha subunit. Biochem J 339 (Pt 2): 241–246.
[8]  Lee J, Stock J (1993) Protein phosphatase 2A catalytic subunit is methyl-esterified at its carboxyl terminus by a novel methyltransferase. J Biol Chem 268: 19192–19195.
[9]  Lee J, Chen Y, Tolstykh T, Stock J (1996) A specific protein carboxyl methylesterase that demethylates phosphoprotein phosphatase 2A in bovine brain. Proc Natl Acad Sci U S A 93: 6043–6047.
[10]  Xing Y, Li Z, Chen Y, Stock JB, Jeffrey PD, et al. (2008) Structural mechanism of demethylation and inactivation of protein phosphatase 2A. Cell 133: 154–163.
[11]  Stanevich V, Jiang L, Satyshur KA, Li Y, Jeffrey PD, et al. (2011) The Structural Basis for Tight Control of PP2A Methylation and Function by LCMT-1. Mol Cell 41: 331–342.
[12]  Guo F, Stanevich V, Wlodarchak N, Jiang L, Satyshur KA, et al.. (2013) Structural basis of PP2A activation by PTPA, an ATP-dependent activation chaperone. Cell Research doi:10.1038/cr.2013.138.
[13]  Groves MR, Hanlon N, Turowski P, Hemmings BA, Barford D (1999) The structure of the protein phosphatase 2A PR65/A subunit reveals the conformation of its 15 tandemly repeated HEAT motifs. Cell 96: 99–110.
[14]  Ruediger R, Hentz M, Fait J, Mumby M, Walter G (1994) Molecular model of the A subunit of protein phosphatase 2A: interaction with other subunits and tumor antigens. J Virol 68: 123–129.
[15]  Ruediger R, Roeckel D, Fait J, Bergqvist A, Magnusson G, et al. (1992) Identification of binding sites on the regulatory A subunit of protein phosphatase 2A for the catalytic C subunit and for tumor antigens of simian virus 40 and polyomavirus. Mol Cell Biol 12: 4872–4882.
[16]  Hombauer H, Weismann D, Mudrak I, Stanzel C, Fellner T, et al. (2007) Generation of active protein phosphatase 2A is coupled to holoenzyme assembly. PLoS Biol 5: e155.
[17]  Xing Y, Xu Y, Chen Y, Jeffrey PD, Chao Y, et al. (2006) Structure of protein phosphatase 2A core enzyme bound to tumor-inducing toxins. Cell 127: 341–353.
[18]  Jiang L, Stanevich V, Satyshur KA, Kong M, Watkins GR, et al. (2013) Structural basis of protein phosphatase 2A stable latency. Nat Commun 4: 1699.
[19]  Chao Y, Xing Y, Chen Y, Xu Y, Lin Z, et al. (2006) Structure and mechanism of the phosphotyrosyl phosphatase activator. Mol Cell 23: 535–546.
[20]  Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci U S A 98: 10037–10041.
[21]  Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, et al. (2004) UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem 25: 1605–1612.
[22]  Wlodarchak N, Guo F, Satyshur KA, Jiang L, Jeffrey PD, et al. (2013) Structure of the Ca(2+)-dependent PP2A heterotrimer and insights into Cdc6 dephosphorylation. Cell Res 23: 931–946.
[23]  Favre B, Zolnierowicz S, Turowski P, Hemmings BA (1994) The catalytic subunit of protein phosphatase 2A is carboxyl-methylated in vivo. J Biol Chem 269: 16311–16317.
[24]  Xu Y, Xing Y, Chen Y, Chao Y, Lin Z, et al. (2006) Structure of the protein phosphatase 2A holoenzyme. Cell 127: 1239–1251.
[25]  Xu Y, Chen Y, Zhang P, Jeffrey PD, Shi Y (2008) Structure of a protein phosphatase 2A holoenzyme: insights into B55-mediated Tau dephosphorylation. Mol Cell 31: 873–885.
[26]  Grinthal A, Adamovic I, Weiner B, Karplus M, Kleckner N (2010) PR65, the HEAT-repeat scaffold of phosphatase PP2A, is an elastic connector that links force and catalysis. Proc Natl Acad Sci U S A 107: 2467–2472.
[27]  Colella S, Ohgaki H, Ruediger R, Yang F, Nakamura M, et al. (2001) Reduced expression of the Aalpha subunit of protein phosphatase 2A in human gliomas in the absence of mutations in the Aalpha and Abeta subunit genes. Int J Cancer 93: 798–804.
[28]  Ruediger R, Pham HT, Walter G (2001) Disruption of protein phosphatase 2A subunit interaction in human cancers with mutations in the A alpha subunit gene. Oncogene 20: 10–15.
[29]  Virshup DM, Shenolikar S (2009) From promiscuity to precision: protein phosphatases get a makeover. Mol Cell 33: 537–545.
[30]  Fellner T, Lackner DH, Hombauer H, Piribauer P, Mudrak I, et al. (2003) A novel and essential mechanism determining specificity and activity of protein phosphatase 2A (PP2A) in vivo. Genes Dev 17: 2138–2150.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

微信:OALib Journal