All Title Author
Keywords Abstract

PLOS ONE  2012 

Mitochondrial Genome of the Freshwater Jellyfish Craspedacusta sowerbyi and Phylogenetics of Medusozoa

DOI: 10.1371/journal.pone.0051465

Full-Text   Cite this paper   Add to My Lib


The 17,922 base pairs (bp) nucleotide sequence of the linear mitochondrial DNA (mtDNA) molecule of the freshwater jellyfish Craspedacusta sowerbyi (Hydrozoa,Trachylina, Limnomedusae) has been determined. This sequence exhibits surprisingly low A+T content (57.1%), containing genes for 13 energy pathway proteins, a small and a large subunit rRNAs, and methionine and tryptophan tRNAs. Mitochondrial ancestral medusozoan gene order (AMGO) was found in the C. sowerbyi, as those found in Cubaia aphrodite (Hydrozoa, Trachylina, Limnomedusae), discomedusan Scyphozoa and Staurozoa. The genes of C. sowerbyi mtDNA are arranged in two clusters with opposite transcriptional polarities, whereby transcription proceeds toward the ends of the DNA molecule. Identical inverted terminal repeats (ITRs) flank the ends of the mitochondrial DNA molecule, a characteristic typical of medusozoans. In addition, two open reading frames (ORFs) of 354 and 1611 bp in length were found downstream of the large subunit rRNA gene, similar to the two ORFs of ORF314 and polB discovered in the linear mtDNA of C. aphrodite, discomedusan Scyphozoa and Staurozoa. Phylogenetic analyses of C. sowerbyi and other cnidarians were carried out based on both nucleotide and inferred amino acid sequences of the 13 mitochondrial energy pathway genes. Our working hypothesis supports the monophyletic Medusozoa being a sister group to Octocorallia (Cnidaria, Anthozoa). Within Medusozoa, the phylogenetic analysis suggests that Staurozoa may be the earliest diverging class and the sister group of all other medusozoans. Cubozoa and coronate Scyphozoa form a clade that is the sister group of Hydrozoa plus discomedusan Scyphozoa. Hydrozoa is the sister group of discomedusan Scyphozoa. Semaeostomeae is a paraphyletic clade with Rhizostomeae, while Limnomedusae (Trachylina) is the sister group of hydroidolinans and may be the earliest diverging lineage among Hydrozoa.


[1]  Marques AC, Collins AG (2004) Cladistic analysis of Medusozoa and cnidarian evolution. Invert. Biol. 123: 23–42.
[2]  Collins AG, Schuchert P, Marques AC, Jankowski T, Medina M, et al. (2006) Medusozoan phylogeny and character evolution clarified by new large and small subunit rDNA data and an assessment of the utility of phylogenetic mixture models. Syst Biol 55: 97–115.
[3]  Bridge D, Cunningham CW, Schierwater B, DeSalle R, Buss LW (1992) Class-level relationships in the phylum Cnidaria: evidence from mitochondrial genome structure. Proc Natl Acad Sci USA 89: 8750–8753.
[4]  Bridge D, Cunningham CW, DeSalle R, Buss LW (1995) Class-level relationships in the phylum Cnidaria: molecular and morphological evidence. Mol Biol Evol 12: 679–689.
[5]  Collins AG (2002) Phylogeny of Medusozoa and the evolution of cnidarian life cycles. J Evol Biol 15: 418–432.
[6]  Park E, Hwang DS, Lee JS, Song JI, Seo TK, et al. (2012) Estimation of divergence times in cnidarian evolution based on mitochondrial protein-coding genes and the fossil record. Mol Phylogenet Evol 62(1): 329–45.
[7]  Kayal E, Bentlage B, Collins AG, Kayal M, Pirro S, et al. (2012) Evolution of linear mitochondrial genomes in medusozoan cnidarians. Genome Biol Evol 4(1): 1–12.
[8]  Kayal E, Lavrov DV (2008) The mitochondrial genome of Hydra oligactis (Cnidaria, Hydrozoa) sheds new light on animal mtDNA evolution and cnidarian phylogeny. Gene 410: 177–186.
[9]  Voigt O, Erpenbeck D, W?rheide G (2008) A fragmented metazoan organellar genome: the two mitochondrial chromosomes of Hydra magnipapillata. BMC Genomics 9: 350–359.
[10]  Smith DR, Kayal E, Yanagihara AA, Collins AG, Pirro S, et al. (2012) First complete mitochondrial genome sequence from a box jellyfish reveals a highly fragmented linear architecture and insights into telomere evolution. Genome Biol Evol 4(1): 52–58.
[11]  Shao Z, Graf S, Chaga OY, Lavrov DV (2006) Mitochondrial genome of the moon jelly Aurelia aurita (Cnidaria, Scyphozoa): a linear DNA molecule encoding a putative DNA-dependent DNA polymerase. Gene 381: 92–101.
[12]  Jankowski T (2001) The freshwater medusae of the world: A taxonomic and systematic literature study with some remarks on other inland water jellyfish. Hydrobiologia 462: 91–113.
[13]  Kramp PL (1950) Freshwater medusae in China. Proc Zool Soc Lond 120: 165–184.
[14]  Kramp PL (1961) Synopsis of the Medusae of the world. Order Limnomedusae. J Mar Biol Ass UK 40: 213–236.
[15]  Acker TS, Muscat AM (1976) The ecology of Craspedacusta sowerbii Lankester, a freshwater hydrozoan. Am Midl Nat 95: 323–336.
[16]  Boothroyd IKG, Etheredge MK, Green JD (2002) Spatial distribution, size structure, and prey of Craspedacusta sowerbyi Lankester in a shallow New Zealand lake. Hydrobiologia 468: 23–32.
[17]  Pennak RW (1956) The fresh-water jellyfish Craspedacusta in Colorado with some remarks on its ecology and morphological degenerataion. T Am Microsc Soc 75: 324–331.
[18]  Silva WM, Roche KF (2007) Occurrence of the freshwater jellyfish Craspedacusta sowerbii (Lankester, 1880) (Hydrozoa, Limnomedusae) in a calcareous lake in Mato Frosse do Sul, Brazil Biota Neotropica. 7: 227–229.
[19]  Jankowski T, Collins AG, Campbell R (2008) Global diversity of inland water cnidarians. Hydrobiologia 595: 35–40.
[20]  Fritz GB, Pfannkuchen M, Reuner A, Schill RO, Brümmer F (2009) Craspedacusta sowerbii, Lankester 1880– population dispersal analysis using COI and ITS sequences. J Limnol 68: 46–52.
[21]  Zhang LQ, Wang GT, Yao WJ, Li WX, Gao Q (2009) Molecular systematics of medusae in the genus Craspedacusta (Cnidaria: Hydrozoa: Limnomedusae) in China with the reference to the identity of species. J Plankton Res 31: 563–570.
[22]  Lavrov DV, Forget L, Kelly M, Lang BF (2005) Mitochondrial genomes of two demosponges provide insights into an early stage of animal evolution. Mol Biol Evol 22: 1231–1239.
[23]  Medina M, Collins AG, Takaoka TL, Kuehl JV, Boore JL (2006) Naked corals: skeleton loss in Scleractinia. Proc Natl Acad Sci U. S. A.. 103: 9096–9100.
[24]  van Oppen MJ, Catmull J, McDonald BJ, Hislop NR, Hagerman PJ, et al. (2002) The mitochondrial genome of Acropora tenuis (Cnidaria; Scleractinia) contains a large group I intron and a candidate control region. J Mol Evol 55: 1–13.
[25]  Petersen KW (1979) Development of coloniality in Hydrozoa. In: Larviood G and Rosen BR. Biology and systematics of colonial organisms. New York: Academic Press. 105–139.
[26]  Bouillon J, Boero F (2000) The Hydrozoa: a new classification in the light of old knowledge. Thalass Salent 24: 3–5.
[27]  Collins AG (2000) Towards understanding the phylogenetic history of Hydrozoa: hypothesis testing with 18 S gene sequence data. Scient Mar 64: 5–22.
[28]  Collins AG, Bentlage B, Lindner A, Lindsay D, Haddock SHD, et al. (2008) Phylogenetics of Trachylina (Cnidaria: Hydrozoa) with new insights on the evolution of some problematical taxa. J Mar Biol Assoc 88: 1673–1685.
[29]  Kim J, Kim W, Cunningham CW (1999) A new perspective on lower metazoan relationships from 18 S rDNA sequences. Mol Biol Evol 16: 423–427.
[30]  Cartwright P, Evans NM, Dunn CW, Marques AC, Miglietta MP, et al. (2008) Phylogenetics of Hydroidolina (Hydrozoa: Cnidaria). J Mar Biol Assoc 88: 1663–1672.
[31]  Van Iten H, De Moraes LJ, Simoes MG, Marques AC, Collins AG (2006) Reassessment of the phylogenetic position of conulariids (?Ediacaran-Triassic) within the subphylum medusozoa (Phylum Cnidaria). J Syst Palaeontol 4: 109–118.
[32]  Werner B (1973) New investigations on systematics and evolution of the class Scyphozoa and the phylum Cnidaria. Pub Seto Mar Biol Lab 20: 35–61.
[33]  Petersen KW (1990) Evolution and taxonomy in capitate hydroids and medusae (Cnidaria: Hydrozoa). Zool J Linn Soc 100: 101–231.
[34]  Leonard J L (1980) Cubomedusae belong to the class Cubozoa, not Scyphozoa. Nature 284: 377.
[35]  Salvini-Plawen (1978) On the origin and evolution of the lower Metazoa. Z Zool Syst Evolutions 16: 40–88.
[36]  Satterlie RA, Spencer AN (1980) Reply to Leonard’s paper Cubomedusae belong to the class Cubozoa, not Scyphozoa. Nature 284: 377.
[37]  Schuchert P (1993) Phylogenetic analysis of the Cnidaria. J ZOOL SYST EVOL RES 31: 161–173.
[38]  Sambrook J, Fritsch EF, Maniatis T (eds) (1989) Molecular Cloning: A Laboratory Manual. New York: Cold Spring Harbor Laboratory Press.
[39]  Boore JL, Brown WM (2000) Mitochondrial genomes of Galathealinum, Helobdella, and Platynereis: sequence and gene arrangement comparisons indicate that Pogonophora is not a phylum and Annelida and Arthropoda are not sister taxa. Mol Biol Evol 17: 87–106.
[40]  Liu YG, Chen Y (2007) High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences. Biotechniques 43: 649–656.
[41]  Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucl Acids Res 25: 955–964.
[42]  Thompson JD, Higgins DG, Gibson TJ (1994) Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acids Res 22: 4673–4680.
[43]  Stajich JE, Block D, Boulez K (2002) The bioperl toolkit: perl modules for the life sciences. Genome Res 12: 1611–1618.
[44]  Rice P, Longden I, Bleasby A (2000) EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet 16: 276–277.
[45]  Hall BG (2004) Phylogenetic Trees Made Easy: A How-to Manual, 2nd ed. Sunderland, Massachusetts: Sinauer Associates.
[46]  Hassanin A, Leger N, Deutsch J (2005) Evidence for multiple reversals of asymmetric mutational constraints during the evolution of the mitochondrial genome of Metazoa, and consequences for phylogenetic inferences. Syst Biol 54: 277–298.
[47]  L?ytynoja A, Milinkovitch MC (2001) SOAP, cleaning multiple alignments from unstable blocks. Bioinformatics 17: 573–574.
[48]  Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688–2690.
[49]  Cao Y, Janke A, Waddell PJ, Westerman M, Takenaka O, et al. (1998) Conflict amongst individual mitochondrial proteins in resolving the phylogeny of eutherian orders. J Mol Evol 47: 307–322.
[50]  Yang Z, Nielsen R, Hasegawa M (1998) Models of amino acid substitution and applications to mitochondrial protein evolution. Mol Biol Evol 15: 1600–1611.
[51]  Posada D, Crandall KA (1998) Modeltest: Testing the model of DNA substitution. Bioinformatics 14: 817–818.
[52]  Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML web servers. Syst Biol 57: 758–771.


comments powered by Disqus