All Title Author
Keywords Abstract

PLOS ONE  2012 

Evolutionary Genomics of Transposable Elements in Saccharomyces cerevisiae

DOI: 10.1371/journal.pone.0050978

Full-Text   Cite this paper   Add to My Lib


Saccharomyces cerevisiae is one of the premier model systems for studying the genomics and evolution of transposable elements. The availability of the S. cerevisiae genome led to unprecedented insights into its five known transposable element families (the LTR retrotransposons Ty1-Ty5) in the years shortly after its completion. However, subsequent advances in bioinformatics tools for analysing transposable elements and the recent availability of genome sequences for multiple strains and species of yeast motivates new investigations into Ty evolution in S. cerevisiae. Here we provide a comprehensive phylogenetic and population genetic analysis of all Ty families in S. cerevisiae based on a systematic re-annotation of Ty elements in the S288c reference genome. We show that previous annotation efforts have underestimated the total copy number of Ty elements for all known families. In addition, we identify a new family of Ty3-like elements related to the S. paradoxus Ty3p which is composed entirely of degenerate solo LTRs. Phylogenetic analyses of LTR sequences identified three families with short-branch, recently active clades nested among long branch, inactive insertions (Ty1, Ty3, Ty4), one family with essentially all recently active elements (Ty2) and two families with only inactive elements (Ty3p and Ty5). Population genomic data from 38 additional strains of S. cerevisiae show that the majority of Ty insertions in the S288c reference genome are fixed in the species, with insertions in active clades being predominantly polymorphic and insertions in inactive clades being predominantly fixed. Finally, we use comparative genomic data to provide evidence that the Ty2 and Ty3p families have arisen in the S. cerevisiae genome by horizontal transfer. Our results demonstrate that the genome of a single individual contains important information about the state of TE population dynamics within a species and suggest that horizontal transfer may play an important role in shaping the genomic diversity of transposable elements in unicellular eukaryotes.


[1]  Pritham EJ (2009) Transposable elements and factors influencing their success in eukaryotes. J Hered 100: 648–655.
[2]  Montgomery E, Charlesworth B, Langley CH (1987) A test for the role of natural selection in the stabilization of transposable element copy number in a population of Drosophila melanogaster. Genet Res 49: 31–41.
[3]  Biemont C, Tsitrone A, Vieira C, Hoogland C (1997) Transposable element distribution in Drosophila. Genetics 147: 1997–1999.
[4]  Charlesworth B, Langley CH, Sniegowski PD (1997) Transposable element distributions in Drosophila. Genetics 147: 1993–1995.
[5]  Hollister JD, Gaut BS (2007) Population and evolutionary dynamics of Helitron transposable elements in Arabidopsis thaliana. Mol Biol Evol 24: 2515–2524.
[6]  Song M, Boissinot S (2007) Selection against LINE-1 retrotransposons results principally from their ability to mediate ectopic recombination. Gene 390: 206–213.
[7]  Carr M, Nelson M, Leadbeater BS, Baldauf SL (2008) Three families of LTR retrotransposons are present in the genome of the choanoflagellate Monosiga brevicollis. Protist 159: 579–590.
[8]  Charlesworth B, Langley CH (1989) The population genetics of Drosophila transposable elements. Annu Rev Genet 23: 251–287.
[9]  Daborn PJ, Yen JL, Bogwitz MR, Le Goff G, Feil E, et al. (2002) A single p450 allele associated with insecticide resistance in Drosophila. Science 297: 2253–2256.
[10]  Darboux I, Charles JF, Pauchet Y, Warot S, Pauron D (2007) Transposon-mediated resistance to Bacillus sphaericus in a field-evolved population of Culex pipiens (Diptera: Culicidae). Cell Microbiol 9: 2022–2029.
[11]  Schlenke TA, Begun DJ (2004) Strong selective sweep associated with a transposon insertion in Drosophila simulans. Proc Natl Acad Sci U S A 101: 1626–1631.
[12]  Gonzalez J, Lenkov K, Lipatov M, Macpherson JM, Petrov DA (2008) High rate of recent transposable element-induced adaptation in Drosophila melanogaster. PLoS Biol 6: e251.
[13]  Aminetzach YT, Macpherson JM, Petrov DA (2005) Pesticide resistance via transposition-mediated adaptive gene truncation in Drosophila. Science 309: 764–767.
[14]  Bartolome C, Bello X, Maside X (2009) Widespread evidence for horizontal transfer of transposable elements across Drosophila genomes. Genome Biol 10: R22.
[15]  Lerat E, Burlet N, Biemont C, Vieira C (2011) Comparative analysis of transposable elements in the melanogaster subgroup sequenced genomes. Gene 473: 100–109.
[16]  Thomas J, Schaack S, Pritham EJ (2010) Pervasive horizontal transfer of rolling-circle transposons among animals. Genome Biol Evol 2: 656–664.
[17]  Gilbert C, Schaack S, Pace JK 2nd, Brindley PJ, Feschotte C (2010) A role for host-parasite interactions in the horizontal transfer of transposons across phyla. Nature 464: 1347–1350.
[18]  Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, et al.. (1996) Life with 6000 genes. Science 274: 546, 563–547.
[19]  Voytas DF, Boeke JD (1992) Yeast retrotransposon revealed. Nature 358: 717.
[20]  Kingsman AJ, Gimlich RL, Clarke L, Chinault AC, Carbon J (1981) Sequence variation in dispersed repetitive sequences in Saccharomyces cerevisiae. J Mol Biol 145: 619–632.
[21]  Hani J, Feldmann H (1998) tRNA genes and retroelements in the yeast genome. Nucleic Acids Res 26: 689–696.
[22]  Kim JM, Vanguri S, Boeke JD, Gabriel A, Voytas DF (1998) Transposable elements and genome organization: a comprehensive survey of retrotransposons revealed by the complete Saccharomyces cerevisiae genome sequence. Genome Res 8: 464–478.
[23]  Jordan IK, McDonald JF (1998) Evidence for the role of recombination in the regulatory evolution of Saccharomyces cerevisiae Ty elements. J Mol Evol 47: 14–20.
[24]  Hansen LJ, Sandmeyer SB (1990) Characterization of a transpositionally active Ty3 element and identification of the Ty3 integrase protein. J Virol 64: 2599–2607.
[25]  Hug AM, Feldmann H (1996) Yeast retrotransposon Ty4: the majority of the rare transcripts lack a U3-R sequence. Nucleic Acids Res 24: 2338–2346.
[26]  Wilke CM, Maimer E, Adams J (1992) The population biology and evolutionary significance of Ty elements in Saccharomyces cerevisiae. Genetica 86: 155–173.
[27]  Liti G, Carter DM, Moses AM, Warringer J, Parts L, et al. (2009) Population genomics of domestic and wild yeasts. Nature 458: 337–341.
[28]  Blanc VM, Adams J (2004) Ty1 insertions in intergenic regions of the genome of Saccharomyces cerevisiae transcribed by RNA polymerase III have no detectable selective effect. FEMS Yeast Res 4: 487–491.
[29]  Fraser HB, Moses AM, Schadt EE (2010) Evidence for widespread adaptive evolution of gene expression in budding yeast. Proc Natl Acad Sci U S A 107: 2977–2982.
[30]  Jordan IK, McDonald JF (1999) Tempo and mode of Ty element evolution in Saccharomyces cerevisiae. Genetics 151: 1341–1351.
[31]  Neuveglise C, Feldmann H, Bon E, Gaillardin C, Casaregola S (2002) Genomic evolution of the long terminal repeat retrotransposons in hemiascomycetous yeasts. Genome Res 12: 930–943.
[32]  Fingerman EG, Dombrowski PG, Francis CA, Sniegowski PD (2003) Distribution and sequence analysis of a novel Ty3-like element in natural Saccharomyces paradoxus isolates. Yeast 20: 761–770.
[33]  Moore SP, Liti G, Stefanisko KM, Nyswaner KM, Chang C, et al. (2004) Analysis of a Ty1-less variant of Saccharomyces paradoxus: the gain and loss of Ty1 elements. Yeast 21: 649–660.
[34]  Liti G, Peruffo A, James SA, Roberts IN, Louis EJ (2005) Inferences of evolutionary relationships from a population survey of LTR-retrotransposons and telomeric-associated sequences in the Saccharomyces sensu stricto complex. Yeast 22: 177–192.
[35]  Wheelan SJ, Scheifele LZ, Martinez-Murillo F, Irizarry RA, Boeke JD (2006) Transposon insertion site profiling chip (TIP-chip). Proc Natl Acad Sci U S A 103: 17632–17637.
[36]  Gabriel A, Dapprich J, Kunkel M, Gresham D, Pratt SC, et al. (2006) Global mapping of transposon location. PLoS Genet 2: e212.
[37]  Carreto L, Eiriz MF, Gomes AC, Pereira PM, Schuller D, et al. (2008) Comparative genomics of wild type yeast strains unveils important genome diversity. BMC Genomics 9: 524.
[38]  Shibata Y, Malhotra A, Bekiranov S, Dutta A (2009) Yeast genome analysis identifies chromosomal translocation, gene conversion events and several sites of Ty element insertion. Nucleic Acids Res 37: 6454–6465.
[39]  Mularoni L, Zhou Y, Bowen T, Gangadharan S, Wheelan S, et al.. (2012) Retrotransposon Ty1 integration targets specifically positioned asymmetric nucleosomal DNA segments in tRNA hotspots. Genome Res.
[40]  Qi X, Daily K, Nguyen K, Wang H, Mayhew D, et al.. (2012) Retrotransposon profiling of RNA polymerase III initiation sites. Genome Research.
[41]  Baller JA, Gao J, Voytas DF (2011) Access to DNA establishes a secondary target site bias for the yeast retrotransposon Ty5. Proc Natl Acad Sci U S A 108: 20351–20356.
[42]  Baller JA, Gao J, Stamenova R, Curcio MJ, Voytas DF (2012) A nucleosomal surface defines an integration hotspot for the Saccharomyces cerevisiae Ty1 retrotransposon. Genome Res.
[43]  Janetzky B, Lehle L (1992) Ty4, a new retrotransposon from Saccharomyces cerevisiae, flanked by tau-elements. J Biol Chem 267: 19798–19805.
[44]  Pereira V (2008) Automated paleontology of repetitive DNA with REANNOTATE. BMC Genomics 9: 614.
[45]  Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32: 1792–1797.
[46]  Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML Web servers. Syst Biol 57: 758–771.
[47]  Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574.
[48]  Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451–1452.
[49]  Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci U S A 76: 5269–5273.
[50]  Watterson GA (1975) On the number of segregating sites in genetical models without recombination. Theor Popul Biol 7: 256–276.
[51]  Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585–595.
[52]  Brookfield JF (1986) A model for DNA sequence evolution within transposable element families. Genetics 112: 393–407.
[53]  Maside X, Bartolome C, Charlesworth B (2003) Inferences on the evolutionary history of the S-element family of Drosophila melanogaster. Mol Biol Evol 20: 1183–1187.
[54]  Sanchez-Gracia A, Maside X, Charlesworth B (2005) High rate of horizontal transfer of transposable elements in Drosophila. Trends Genet 21: 200–203.
[55]  Hudson RR, Kaplan NL (1985) Statistical properties of the number of recombination events in the history of a sample of DNA sequences. Genetics 111: 147–164.
[56]  Galtier N, Gouy M, Gautier C (1996) SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci 12: 543–548.
[57]  Jordan IK, McDonald JF (1999) Comparative genomics and evolutionary dynamics of Saccharomyces cerevisiae Ty elements. Genetica 107: 3–13.
[58]  Cameron JR, Loh EY, Davis RW (1979) Evidence for transposition of dispersed repetitive DNA families in yeast. Cell 16: 739–751.
[59]  Curcio MJ, Sanders NJ, Garfinkel DJ (1988) Transpositional competence and transcription of endogenous Ty elements in Saccharomyces cerevisiae: implications for regulation of transposition. Mol Cell Biol 8: 3571–3581.
[60]  Kupiec M, Petes TD (1988) Meiotic recombination between repeated transposable elements in Saccharomyces cerevisiae. Mol Cell Biol 8: 2942–2954.
[61]  Zou S, Wright DA, Voytas DF (1995) The Saccharomyces Ty5 retrotransposon family is associated with origins of DNA replication at the telomeres and the silent mating locus HMR. Proc Natl Acad Sci U S A 92: 920–924.
[62]  Naumov GI, Naumova ES, Lantto RA, Louis EJ, Korhola M (1992) Genetic homology between Saccharomyces cerevisiae and its sibling species S. paradoxus and S. bayanus: electrophoretic karyotypes. Yeast 8: 599–612.
[63]  Fink GR, Boeke JD, Garfinkel DJ (1986) The mechanism and consequences of retrotransposition. Trends in Genetics 2: 118–123.
[64]  Jordan IK, McDonald JF (1998) Interelement selection in the regulatory region of the copia retrotransposon. J Mol Evol 47: 670–676.
[65]  Bergman CM, Quesneville H (2007) Discovering and detecting transposable elements in genome sequences. Brief Bioinform 8: 382–392.
[66]  Kellis M, Patterson N, Endrizzi M, Birren B, Lander ES (2003) Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature 423: 241–254.
[67]  Cliften P, Sudarsanam P, Desikan A, Fulton L, Fulton B, et al. (2003) Finding functional features in Saccharomyces genomes by phylogenetic footprinting. Science 301: 71–76.
[68]  Dymond JS, Richardson SM, Coombes CE, Babatz T, Muller H, et al. (2011) Synthetic chromosome arms function in yeast and generate phenotypic diversity by design. Nature 477: 471–476.
[69]  Sipiczki M (2008) Interspecies hybridization and recombination in Saccharomyces wine yeasts. FEMS Yeast Res 8: 996–1007.
[70]  Marinoni G, Manuel M, Petersen RF, Hvidtfeldt J, Sulo P, et al. (1999) Horizontal transfer of genetic material among Saccharomyces yeasts. J Bacteriol 181: 6488–6496.
[71]  Sebastiani F, Barberio C, Casalone E, Cavalieri D, Polsinelli M (2002) Crosses between Saccharomyces cerevisiae and Saccharomyces bayanus generate fertile hybrids. Res Microbiol 153: 53–58.
[72]  Greig D, Louis EJ, Borts RH, Travisano M (2002) Hybrid speciation in experimental populations of yeast. Science 298: 1773–1775.
[73]  Liti G, Barton DB, Louis EJ (2006) Sequence diversity, reproductive isolation and species concepts in Saccharomyces. Genetics 174: 839–850.
[74]  Wei W, McCusker JH, Hyman RW, Jones T, Ning Y, et al. (2007) Genome sequencing and comparative analysis of Saccharomyces cerevisiae strain YJM789. Proc Natl Acad Sci U S A 104: 12825–12830.
[75]  Doniger SW, Kim HS, Swain D, Corcuera D, Williams M, et al. (2008) A catalog of neutral and deleterious polymorphism in yeast. PLoS Genet 4: e1000183.
[76]  Esberg A, Muller LA, McCusker JH (2011) Genomic structure of and genome-wide recombination in the Saccharomyces cerevisiae S288C progenitor isolate EM93. PLoS One 6: e25211.
[77]  Bensasson D, Zarowiecki M, Burt A, Koufopanou V (2008) Rapid evolution of yeast centromeres in the absence of drive. Genetics 178: 2161–2167.
[78]  Bensasson D (2011) Evidence for a high mutation rate at rapidly evolving yeast centromeres. BMC Evol Biol 11: 211.
[79]  Boeke JD, Sandmeyer SB (1991) Yeast transposable elements. In: Broach JR, Jones EW, Prongle J, editors. The Molecular and Cdllular Biology of the Yeast Saccharomyces cerevisae. Cold Spring Harbor, N.Y.: Cold Spring Harbor Press. 193–261.
[80]  Servant G, Pennetier C, Lesage P (2008) Remodeling yeast gene transcription by activating the Ty1 long terminal repeat retrotransposon under severe adenine deficiency. Mol Cell Biol 28: 5543–5554.
[81]  Knight SA, Labbe S, Kwon LF, Kosman DJ, Thiele DJ (1996) A widespread transposable element masks expression of a yeast copper transport gene. Genes Dev 10: 1917–1929.
[82]  Gaisne M, Becam AM, Verdiere J, Herbert CJ (1999) A ‘natural’ mutation in Saccharomyces cerevisiae strains derived from S288c affects the complex regulatory gene HAP1 (CYP1). Curr Genet 36: 195–200.
[83]  Jordan IK, McDonald JF (1999) The role of interelement selection in Saccharomyces cerevisiae Ty element evolution. J Mol Evol 49: 352–357.
[84]  Bergman CM, Bensasson D (2007) Recent LTR retrotransposon insertion constrasts with waves of non-LTR insertion since speciation in Drosophila melanogaster. Proc Natl Acad Sci U S A 104: 11340–11345.


comments powered by Disqus

Contact Us


微信:OALib Journal