All Title Author
Keywords Abstract

PLOS ONE  2012 

Possible Association between Expression of Chemokine Receptor-2 (CCR2) and Amyotrophic Lateral Sclerosis (ALS) Patients of North India

DOI: 10.1371/journal.pone.0038382

Full-Text   Cite this paper   Add to My Lib


Background and Objectives We earlier reported elevated chemokine ligand-2 (CCL2) in Indian amyotrophic lateral sclerosis (ALS) patients. We now analysed chemokine receptor-2 (CCR2), the receptor of CCL2, in these ALS patients. Methods Indian sporadic ALS patients (n = 50) were included on the basis of El Escorial criteria. Percentage (%) of CCR2 expressing peripheral blood mononuclear cells (PBMCs) was evaluated using Flow Cytometry. Real Time Polymerase Chain Reaction (PCR) was used to quantitate CCR2 mRNA expression in PBMCs. Normal controls (n = 40) were also included for comparison. Results Flow Cytometry revealed significantly reduced CCR2 expressing PBMCs in the ALS patients. We also found a significant decline in number of CCR2 expressing PBMCs in limb onset ALS when compared to bulbar onset ALS. PBMCs from ALS patients showed substantial down-regulation of CCR2 mRNA. CCR2 mRNA expression was found to be decreased among limb ALS patients as compared to bulbar onset ALS. Further, the count of CCR2+ PBMCs and CCR2 mRNA transcript in PBMCs was significantly lower in severe and moderate ALS as compared to ALS patients with mild impairments. Conclusions Downregulation of PBMCs CCR2 may indicate its etio-pathological relevance in ALS pathogenesis. Reduced PBMCs CCR2 may result in decreased infiltration of leukocytes at the site of degeneration as a compensatory response to ALS. CCR2 levels measurements in hematopoietic stem cells and estimation of comparative PBMCs count among ALS, disease controls and normal controls can unveil its direct neuroprotective role. However, the conclusions are restricted by the absence of neurological/non-neurological disease controls in the study.


[1]  Kuziel WA, Morgan SJ, Dawson TC, Griffin S, Smithies O (1997) Severe reduction in leukocyte adhesion and monocyte extravasation in mice deficient in CC chemokine receptor 2. Proc Natl Acad Sci USA 94: 12053.12058
[2]  Fife BT, Huffnagle GB, Kuziel WA, Karpus WJ (2000) CC chemokine receptor 2 is critical for induction of experimental autoimmune encephalomyelitis. J Exp Med 192: 899.905
[3]  Wilms H, Sievers J, Dengler R, Bufler J, Deuschl G (2003) Intrathecal synthesis of monocyte chemoattractant protein-1 (MCP-1) in amyotrophic lateral sclerosis: further evidence for microglial activation in neurodegeneration. J Neuroimmunol 144: 139.142
[4]  Henkel JS, Engelhardt JI, Siklos L, Simpson EP, Kim SH (2004) Presence of dendritic cells, MCP-1, and activated microglia/macrophages in amyotrophic lateral sclerosis spinal cord tissue. Ann Neurol 55: 221.235
[5]  Simpson EP, Henry YK, Henkel JS, Smith RG, Appel SH (2004) Increased lipid peroxidation in sera of ALS patients: a potential biomarker of disease burden. Neurology 62: 1758.1765
[6]  Baron P, Bussini S, Cardin V, Corbo M, Conti G (2005) Production of monocyte chemoattractant protein-1 in amyotrophic lateral sclerosis. Muscle Nerve 32: 541.544
[7]  Zhang R, Gascon R, Miller RG, Gelinas DF, Mass J (2006) MCP-1 chemokine receptor CCR2 is decreased on circulating monocytes in sporadic amyotrophic lateral sclerosis (sALS). J Neuroimmunol 179: 87.93
[8]  Nagata T, Nagano I, Shiote M, Narai H, Murakami T (2007) Elevation of MCP-1 and MCP-1/VEGF ratio in cerebrospinal fluid of amyotrophic lateral sclerosis patients. Neurol Res 29: 772.776
[9]  Mitchell RM, Freeman WM, Randazzo WT, Stephens HE, Beard JL (2009) A CSF biomarker panel for identification of patients with amyotrophic lateral sclerosis. Neurology 72: 14.19
[10]  Kuhle J, Lindberg RL, Regeniter A, Mehling M, Steck AJ (2009) Increased levels of inflammatory chemokines in amyotrophic lateral sclerosis. Eur J Neurol 16: 771.774
[11]  Tateishi T, Yamasaki R, Tanaka M, Matsushita T, Kikuchi H (2010) CSF chemokine alterations related to clinical course of Amyotrophic Lateral Sclerosis. J Neuroimmnol 222: 76.81
[12]  Gupta PK, Prabhakar S, Sharma S, Anand A (2011) Vascular endothelial growth factor-A (VEGF-A) and chemokine ligand-2 (CCL2) in Amyotrophic Lateral Sclerosis (ALS) patients. J Neuroinflammation 8: 47.
[13]  Gupta PK, Prabhakar S, Abburi C, Sharma NK, Anand A (2011) Vascular endothelial growth factor-A (VEGF-A) and chemokine ligand (CCL2) genes are upregulated in peripheral blood mononuclear cells (PBMCs) in Indian amyotrophic lateral sclerosis (ALS) patients. J Neuroinflammation 8: 114.
[14]  Mantovani S, Garbelli S, Pasini A, Alimonti D, Perotti C (2009) Immune system alterations in sporadic amyotrophic lateral sclerosis patients suggest an ongoing neuroinflammatory process. J Neuroimmunol 210: 73.79
[15]  Eugenin EA, D’Aversa TG, Lopez L, Calderon TM, Berman JW (2003) MCP-1 (CCL2) protects human neurons and astrocytes from NMDA or HIV-tat-induced apoptosis. J Neurochem 85: 1299.1311
[16]  Yao H, Peng F, Dhillon N, Callen S, Bokhari S (2009) Involvement of TRPC channels in CCL2-mediated neuroprotection against tat toxicity. J Neurosci 29: 1657.1669
[17]  Nalini A, Thennarasu K, Gourie-Devi M, Shenoy S, Kulshreshtha D (2008) Clinical characteristics and survival pattern of 1,153 patients with amyotrophic lateral sclerosis: experience over 30 years from India. J Neurol Sci 272: 60.70
[18]  Cedarbaum JM, Stambler N, Malta E, Fuller C, Hilt D (1999) The ALSFRS-R: a revised ALS functional rating scale that incorporates assessments of respiratory function. BDNF ALS Study Group (Phase III). J Neurol Sci 169: 13.21
[19]  Izikson L, Klein RS, Charo IF, Weiner HL, Luster AD (2000) Resistance to experimental autoimmune encephalomyelitis in mice lacking the CC chemokine receptor (CCR) 2. J Exp Med 192: 1075.1080
[20]  Gaupp S, Pitt D, Kuziel WA, Cannella B, Raine CS (2003) Experimental autoimmune encephalomyelitis (EAE) in CCR2(?/?) mice: susceptibility in multiple strains. Am J Pathol 162: 139.150
[21]  Babcock AA, Kuziel WA, Rivest S, Owens T (2003) Chemokine expression by glial cells directs leukocytes to sites of axonal injury in the CNS. J Neurosci 23: 7922.7930
[22]  Mahad D, Callahan MK, Williams KA, Ubogu EE, Kivis?kk P (2006) Modulating CCR2 and CCL2 at the blood-brain barrier: relevance for multiple sclerosis pathogenesis. Brain 129: 212.23
[23]  Kyrkanides S, Miller AW, Miller JN, Tallents RH, Brouxhon SM (2008) Peripheral blood mononuclear cell infiltration and neuroinflammation in the HexB?/? mouse model of neurodegeneration. J Neuroimmunol 203: 50.57
[24]  Pellicanò M, Bulati M, Buffa S, Barbagallo M, Di Prima A (2010) Systemic immune responses in Alzheimer’s disease: in vitro mononuclear cell activation and cytokine production. J Alzheimers Dis 21: 181.192
[25]  Zhang R, Gascon R, Miller RG, Gelinas DF, Mass J (2005) Evidence for systemic immune system alterations in sporadic amyotrophic lateral sclerosis (sALS). J Neuroimmunol 159: 215.224
[26]  Verstraete E, Biessels GJ, van Den Heuvel MP, Visser F, Luijten PR (2010) No evidence of microbleeds in ALS patients at 7 Tesla MRI. Amyotroph Lateral Scler 11: 555.557
[27]  Nicaise C, Mitrecic D, Demetter P, De Decker R, Authelet M (2009) Impaired blood-brain and blood-spinal cord barriers in mutant SOD1-linked ALS rat. Brain Res 1301: 152.162
[28]  Garbuzova-Davis S, Saporta S, Haller E, Kolomey I, Bennett SP (2007) Evidence of compromised blood-spinal cord barrier in early and late symptomatic SOD1 mice modeling ALS. PLoS One 2(11): e1205.
[29]  Bartanusz V, Jezova D, Alajajian B, Digicaylioglu M (2011) The blood-spinal cord barrier: morphology and clinical implications. Ann Neurol 70: 194.206
[30]  Chiu IM, Chen A, Zheng Y, Kosaras B, Tsiftsoglou SA (2008) T lymphocytes potentiate endogenous neuroprotective inflammation in a mouse model of ALS. Proc Natl Acad Sci U S A 105: 17913.17918
[31]  I?zecka J (2004) Cerebrospinal fluid vascular endothelial growth factor in patients with amyotrophic lateral sclerosis. Clin Neurol Neurosurg 106: 289.293
[32]  Bosco MC, Puppo M, Santangelo C, Anfosso L, Pfeffer U (2006) Hypoxia modifies the transcriptome of primary human monocytes: modulation of novel immune-related genes and identification of CC-chemokine ligand 20 as a new hypoxia-inducible gene. J Immunol 177: 1941.1955


comments powered by Disqus

Contact Us


微信:OALib Journal