All Title Author
Keywords Abstract

Molecular and Functional Characterization of a Trypanosoma cruzi Nuclear Adenylate Kinase Isoform

DOI: 10.1371/journal.pntd.0002044

Full-Text   Cite this paper   Add to My Lib


Trypanosoma cruzi, the etiological agent of Chagas' disease, is an early divergent eukaryote in which control of gene expression relies mainly in post-transcriptional mechanisms. Transcription levels are globally up and down regulated during the transition between proliferating and non-proliferating life-cycle stages. In this work we characterized a nuclear adenylate kinase isoform (TcADKn) that is involved in ribosome biogenesis. Nuclear adenylate kinases have been recently described in a few organisms, being all related to RNA metabolism. Depending on active transcription and translation, TcADKn localizes in the nucleolus or the cytoplasm. A non-canonical nuclear localization signal was mapped towards the N-terminal of the protein, being the phosphate-binding loop essential for its localization. In addition, TcADKn nuclear exportation depends on the nuclear exportation adapter CRM1. TcADKn nuclear shuttling is governed by nutrient availability, oxidative stress and by the equivalent in T. cruzi of the mammalian TOR (Target of Rapamycin) pathway. One of the biological functions of TcADKn is ribosomal 18S RNA processing by direct interaction with ribosomal protein TcRps14. Finally, TcADKn expression is regulated by its 3′ UTR mRNA. Depending on extracellular conditions, cells modulate protein translation rates regulating ribosome biogenesis and nuclear adenylate kinases are probably key components in these processes.


[1]  de Souza W (1984) Cell biology of Trypanosoma cruzi. Int Rev Cytol 86: 197–283. doi: 10.1002/14651858.cd005420.pub2
[2]  Kramer S (2012) Developmental regulation of gene expression in the absence of transcriptional control: the case of kinetoplastids. Mol Biochem Parasitol 181: 61–72. doi: 10.1016/j.molbiopara.2011.10.002
[3]  Grisard EC, Sturm NR, Campbell DA (2003) A new species of trypanosome, Trypanosoma desterrensis sp. n., isolated from South American bats. Parasitology 127: 265–271. doi: 10.1017/S0031182003003536
[4]  Parsons M, Nelson RG, Watkins KP, Agabian N (1984) Trypanosome mRNAs share a common 5′ spliced leader sequence. Cell 38: 309–316. doi: 10.1016/0092-8674(84)90552-X
[5]  Liang XH, Haritan A, Uliel S, Michaeli S (2003) trans and cis splicing in trypanosomatids: mechanism, factors, and regulation. Eukaryot Cell 2: 830–840. doi: 10.1128/EC.2.5.830-840.2003
[6]  Hummel HS, Gillespie RD, Swindle J (2000) Mutational analysis of 3′ splice site selection during trans-splicing. J Biol Chem 275: 35522–35531. doi: 10.1074/jbc.M002424200
[7]  Siegel TN, Tan KS, Cross GA (2005) Systematic study of sequence motifs for RNA trans splicing in Trypanosoma brucei. Mol Cell Biol 25: 9586–9594. doi: 10.1128/MCB.25.21.9586-9594.2005
[8]  Clayton CE (2002) Life without transcriptional control? From fly to man and back again. EMBO J 21: 1881–1888. doi: 10.1093/emboj/21.8.1881
[9]  Haile S, Papadopoulou B (2007) Developmental regulation of gene expression in trypanosomatid parasitic protozoa. Curr Opin Microbiol 10: 569–577. doi: 10.1016/j.mib.2007.10.001
[10]  Mani J, Guttinger A, Schimanski B, Heller M, Acosta-Serrano A, et al. (2011) Alba-domain proteins of Trypanosoma brucei are cytoplasmic RNA-binding proteins that interact with the translation machinery. PLoS One 6: e22463. doi: 10.1371/journal.pone.0022463
[11]  Ayub MJ, Atwood J, Nuccio A, Tarleton R, Levin MJ (2009) Proteomic analysis of the Trypanosoma cruzi ribosomal proteins. Biochem Biophys Res Commun 382: 30–34. doi: 10.1016/j.bbrc.2009.02.095
[12]  Gao H, Ayub MJ, Levin MJ, Frank J (2005) The structure of the 80S ribosome from Trypanosoma cruzi reveals unique rRNA components. Proc Natl Acad Sci U S A 102: 10206–10211. doi: 10.1073/pnas.0500926102
[13]  Hasan G, Turner MJ, Cordingley JS (1984) Ribosomal RNA genes of Trypanosoma brucei: mapping the regions specifying the six small ribosomal RNAs. Gene 27: 75–86. doi: 10.1016/0378-1119(84)90240-3
[14]  Ciganda M, Williams N (2012) Characterization of a novel association between two trypanosome-specific proteins and 5S rRNA. PLoS One 7: e30029. doi: 10.1371/journal.pone.0030029
[15]  Prohaska K, Williams N (2009) Assembly of the Trypanosoma brucei 60S ribosomal subunit nuclear export complex requires trypanosome-specific proteins P34 and P37. Eukaryot Cell 8: 77–87. doi: 10.1128/EC.00234-08
[16]  Hellman KM, Ciganda M, Brown SV, Li J, Ruyechan W, et al. (2007) Two trypanosome-specific proteins are essential factors for 5S rRNA abundance and ribosomal assembly in Trypanosoma brucei. Eukaryot Cell 6: 1766–1772. doi: 10.1128/EC.00119-07
[17]  Meng G, Zhai R, Liu B, Zheng X (2008) Identification of a novel nuclear-localized adenylate kinase from Drosophila melanogaster. Biochemistry (Mosc) 73: 38–43. doi: 10.1134/S0006297908010057
[18]  Juhnke H, Charizanis C, Latifi F, Krems B, Entian KD (2000) The essential protein fap7 is involved in the oxidative stress response of Saccharomyces cerevisiae. Mol Microbiol 35: 936–948. doi: 10.1046/j.1365-2958.2000.01768.x
[19]  Zhai R, Meng G, Zhao Y, Liu B, Zhang G, et al. (2006) A novel nuclear-localized protein with special adenylate kinase properties from Caenorhabditis elegans. FEBS Lett 580: 3811–3817. doi: 10.1016/j.febslet.2006.05.074
[20]  Malekkou A, Lederer CW, Lamond AI, Santama N (2010) The nuclear ATPase/adenylate kinase hCINAP is recruited to perinucleolar caps generated upon RNA pol.II inhibition. FEBS Lett 584: 4559–4564. doi: 10.1016/j.febslet.2010.10.044
[21]  Ren H, Wang L, Bennett M, Liang Y, Zheng X, et al. (2005) The crystal structure of human adenylate kinase 6: An adenylate kinase localized to the cell nucleus. Proc Natl Acad Sci U S A 102: 303–308. doi: 10.1073/pnas.0407459102
[22]  Dzeja PP, Zeleznikar RJ, Goldberg ND (1998) Adenylate kinase: kinetic behavior in intact cells indicates it is integral to multiple cellular processes. Mol Cell Biochem 184: 169–182. doi: 10.1023/A:1006859632730
[23]  Granneman S, Nandineni MR, Baserga SJ (2005) The putative NTPase Fap7 mediates cytoplasmic 20S pre-rRNA processing through a direct interaction with Rps14. Mol Cell Biol 25: 10352–10364. doi: 10.1128/MCB.25.23.10352-10364.2005
[24]  Strunk BS, Novak MN, Young CL, Karbstein K (2012) A translation-like cycle is a quality control checkpoint for maturing 40S ribosome subunits. Cell 150: 111–121. doi: 10.1016/j.cell.2012.04.044
[25]  Martin-Nieto J, Roufa DJ (1997) Functional analysis of human RPS14 null alleles. J Cell Sci 110(Pt 8): 955–963.
[26]  Takahashi T, Yano T, Zhu J, Hwang GW, Naganuma A (2010) Overexpression of FAP7, MIG3, TMA19, or YLR392c confers resistance to arsenite on Saccharomyces cerevisiae. J Toxicol Sci 35: 945–946. doi: 10.2131/jts.35.945
[27]  Santama N, Ogg SC, Malekkou A, Zographos SE, Weis K, et al. (2005) Characterization of hCINAP, a novel coilin-interacting protein encoded by a transcript from the transcription factor TAFIID32 locus. J Biol Chem 280: 36429–36441. doi: 10.1074/jbc.M501982200
[28]  Zhang J, Zhang F, Zheng X (2010) Depletion of hCINAP by RNA interference causes defects in Cajal body formation, histone transcription, and cell viability. Cell Mol Life Sci 67: 1907–1918. doi: 10.1007/s00018-010-0301-2
[29]  Villa H, Perez-Pertejo Y, Garcia-Estrada C, Reguera RM, Requena JM, et al. (2003) Molecular and functional characterization of adenylate kinase 2 gene from Leishmania donovani. Eur J Biochem 270: 4339–4347. doi: 10.1046/j.1432-1033.2003.03826.x
[30]  Bouvier LA, Miranda MR, Canepa GE, Alves MJ, Pereira CA (2006) An expanded adenylate kinase gene family in the protozoan parasite Trypanosoma cruzi. Biochim Biophys Acta 1760: 913–921. doi: 10.1016/j.bbagen.2006.02.013
[31]  Ginger ML, Ngazoa ES, Pereira CA, Pullen TJ, Kabiri M, et al. (2005) Intracellular positioning of isoforms explains an unusually large adenylate kinase gene family in the parasite Trypanosoma brucei. J Biol Chem 280: 11781–11789. doi: 10.1074/jbc.M413821200
[32]  Sanchez-Moreno M, Lasztity D, Coppens I, Opperdoes FR (1992) Characterization of carbohydrate metabolism and demonstration of glycosomes in a Phytomonas sp. isolated from Euphorbia characias. Mol Biochem Parasitol 54: 185–199. doi: 10.1016/0166-6851(92)90111-V
[33]  Milagros Camara Mde L, Bouvier LA, Miranda MR, Pereira CA (2012) Identification and validation of Trypanosoma cruzi's glycosomal adenylate kinase containing a peroxisomal targeting signal. Exp Parasitol 130: 408–411. doi: 10.1016/j.exppara.2012.01.020
[34]  Pullen TJ, Ginger ML, Gaskell SJ, Gull K (2004) Protein targeting of an unusual, evolutionarily conserved adenylate kinase to a eukaryotic flagellum. Mol Biol Cell 15: 3257–3265. doi: 10.1091/mbc.E04-03-0217
[35]  Camargo EP (1964) Growth and Differentiation in Trypanosoma Cruzi. I. Origin of Metacyclic Trypanosomes in Liquid Media. Rev Inst Med Trop Sao Paulo 6: 93–100.
[36]  Pereira CA, Alonso GD, Ivaldi S, Silber AM, Alves MJ, et al. (2003) Arginine kinase overexpression improves Trypanosoma cruzi survival capability. FEBS Lett 554: 201–205. doi: 10.1016/S0014-5793(03)01171-2
[37]  Kelly JM, Ward HM, Miles MA, Kendall G (1992) A shuttle vector which facilitates the expression of transfected genes in Trypanosoma cruzi and Leishmania. Nucleic Acids Res 20: 3963–3969. doi: 10.1093/nar/20.15.3963
[38]  Mumberg D, Muller R, Funk M (1995) Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156: 119–122. doi: 10.1016/0378-1119(95)00037-7
[39]  Cokol M, Nair R, Rost B (2000) Finding nuclear localization signals. EMBO Rep 1: 411–415. doi: 10.1093/embo-reports/kvd092
[40]  Lei Z, Dai Y (2006) Assessing protein similarity with Gene Ontology and its use in subnuclear localization prediction. BMC Bioinformatics 7: 491. doi: 10.1186/1471-2105-7-491
[41]  Fornerod M, Ohno M, Yoshida M, Mattaj IW (1997) CRM1 is an export receptor for leucine-rich nuclear export signals. Cell 90: 1051–1060. doi: 10.1016/S0092-8674(00)80371-2
[42]  Walker EJ, Dow JW (1982) Location and properties of two isoenzymes of cardiac adenylate kinase. Biochem J 203: 361–369.
[43]  Leipe DD, Koonin EV, Aravind L (2003) Evolution and classification of P-loop kinases and related proteins. J Mol Biol 333: 781–815. doi: 10.1016/j.jmb.2003.08.040
[44]  Avila AR, Dallagiovanna B, Yamada-Ogatta SF, Monteiro-Goes V, Fragoso SP, et al. (2003) Stage-specific gene expression during Trypanosoma cruzi metacyclogenesis. Genet Mol Res 2: 159–168.
[45]  Hernandez R, Cevallos AM, Nepomuceno-Mejia T, Lopez-Villasenor I (2012) Stationary phase in Trypanosoma cruzi epimastigotes as a preadaptive stage for metacyclogenesis. Parasitol Res 111: 509–514. doi: 10.1007/s00436-012-2974-y
[46]  Trimbur GM, Goeckeler JL, Brodsky JL, Walsh CJ (1999) Cloning, sequencing, and nucleolar targeting of the basal-body-binding nucleolar protein BN46/51. J Cell Sci 112(Pt 8): 1159–1168.
[47]  Ramirez MI, Yamauchi LM, de Freitas LH Jr, Uemura H, Schenkman S (2000) The use of the green fluorescent protein to monitor and improve transfection in Trypanosoma cruzi. Mol Biochem Parasitol 111: 235–240. doi: 10.1016/S0166-6851(00)00309-1
[48]  Marchetti MA, Tschudi C, Kwon H, Wolin SL, Ullu E (2000) Import of proteins into the trypanosome nucleus and their distribution at karyokinesis. J Cell Sci 113(Pt 5): 899–906.
[49]  Cuevas IC, Frasch AC, D'Orso I (2005) Insights into a CRM1-mediated RNA-nuclear export pathway in Trypanosoma cruzi. Mol Biochem Parasitol 139: 15–24. doi: 10.1016/j.molbiopara.2004.11.002
[50]  Bringaud F, Riviere L, Coustou V (2006) Energy metabolism of trypanosomatids: adaptation to available carbon sources. Mol Biochem Parasitol 149: 1–9. doi: 10.1016/j.molbiopara.2006.03.017
[51]  ter Kulle BH (1993) Glucose and proline transport in kinetoplastids. Parasitol Today 9: 206–210. doi: 10.1016/0169-4758(93)90009-5
[52]  Ryley JF (1953) Carbohydrate metabolism in protozoa and metal-binding substances. Nature 171: 747–748. doi: 10.1038/171747a0
[53]  Cassola A, De Gaudenzi JG, Frasch AC (2007) Recruitment of mRNAs to cytoplasmic ribonucleoprotein granules in trypanosomes. Mol Microbiol 65: 655–670. doi: 10.1111/j.1365-2958.2007.05833.x
[54]  Balagopal V, Parker R (2009) Polysomes, P bodies and stress granules: states and fates of eukaryotic mRNAs. Curr Opin Cell Biol 21: 403–408. doi: 10.1016/
[55]  Nardelli SC, Avila AR, Freund A, Motta MC, Manhaes L, et al. (2007) Small-subunit rRNA processome proteins are translationally regulated during differentiation of Trypanosoma cruzi. Eukaryot Cell 6: 337–345. doi: 10.1128/EC.00279-06
[56]  Stoyanova BB, Hadjiolov AA (1979) Alterations in the processing of rat-liver ribosomal RNA caused by cycloheximide inhibition of protein synthesis. Eur J Biochem 96: 349–356. doi: 10.1111/j.1432-1033.1979.tb13046.x
[57]  Pestka S (1971) Inhibitors of ribosome functions. Annu Rev Microbiol 25: 487–562. doi: 10.1146/annurev.mi.25.100171.002415
[58]  Hash JH (1972) Antibiotic mechanisms. Annu Rev Pharmacol 12: 35–56. doi: 10.1146/
[59]  Zimmermann RA, Levinthal C (1967) Messenger RNA and RNA transcription time. J Mol Biol 30: 349–370.
[60]  Lewinska A, Wnuk M, Grzelak A, Bartosz G (2010) Nucleolus as an oxidative stress sensor in the yeast Saccharomyces cerevisiae. Redox Rep 15: 87–96. doi: 10.1179/174329210X12650506623366
[61]  Zhu CH, Kim J, Shay JW, Wright WE (2008) SGNP: an essential Stress Granule/Nucleolar Protein potentially involved in 5.8s rRNA processing/transport. PLoS One 3: e3716. doi: 10.1371/journal.pone.0003716
[62]  Villanova GV, Nardelli SC, Cribb P, Magdaleno A, Silber AM, et al. (2009) Trypanosoma cruzi bromodomain factor 2 (BDF2) binds to acetylated histones and is accumulated after UV irradiation. Int J Parasitol 39: 665–673. doi: 10.1016/j.ijpara.2008.11.013
[63]  Miranda MR, Canepa GE, Bouvier LA, Pereira CA (2006) Trypanosoma cruzi: Oxidative stress induces arginine kinase expression. Exp Parasitol 114: 341–344. doi: 10.1016/j.exppara.2006.04.004
[64]  Baltanas FC, Casafont I, Weruaga E, Alonso JR, Berciano MT, et al. (2011) Nucleolar disruption and cajal body disassembly are nuclear hallmarks of DNA damage-induced neurodegeneration in purkinje cells. Brain Pathol 21: 374–388. doi: 10.1111/j.1750-3639.2010.00461.x
[65]  Moore HM, Bai B, Boisvert FM, Latonen L, Rantanen V, et al. (2011) Quantitative proteomics and dynamic imaging of the nucleolus reveal distinct responses to UV and ionizing radiation. Mol Cell Proteomics 10: M111 009241. doi: 10.1074/mcp.M111.009241
[66]  Schenkman S, Pascoalino Bdos S, Nardelli SC (2011) Nuclear structure of Trypanosoma cruzi. Adv Parasitol 75: 251–283. doi: 10.1016/B978-0-12-385863-4.00012-5
[67]  Barquilla A, Crespo JL, Navarro M (2008) Rapamycin inhibits trypanosome cell growth by preventing TOR complex 2 formation. Proc Natl Acad Sci U S A 105: 14579–14584. doi: 10.1073/pnas.0802668105
[68]  Powers T, Walter P (1999) Regulation of ribosome biogenesis by the rapamycin-sensitive TOR-signaling pathway in Saccharomyces cerevisiae. Mol Biol Cell 10: 987–1000. doi: 10.1091/mbc.10.4.987
[69]  Honma Y, Kitamura A, Shioda R, Maruyama H, Ozaki K, et al. (2006) TOR regulates late steps of ribosome maturation in the nucleoplasm via Nog1 in response to nutrients. EMBO J 25: 3832–3842. doi: 10.1038/sj.emboj.7601262
[70]  Loewith R, Jacinto E, Wullschleger S, Lorberg A, Crespo JL, et al. (2002) Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell 10: 457–468. doi: 10.1016/S1097-2765(02)00636-6
[71]  Drakou CE, Malekkou A, Hayes JM, Lederer CW, Leonidas DD, et al. (2012) hCINAP is an atypical mammalian nuclear adenylate kinase with an ATPase motif: structural and functional studies. Proteins 80: 206–220. doi: 10.1002/prot.23186
[72]  Boucher N, Wu Y, Dumas C, Dube M, Sereno D, et al. (2002) A common mechanism of stage-regulated gene expression in Leishmania mediated by a conserved 3′-untranslated region element. J Biol Chem 277: 19511–19520. doi: 10.1074/jbc.M200500200
[73]  Furger A, Schurch N, Kurath U, Roditi I (1997) Elements in the 3′ untranslated region of procyclin mRNA regulate expression in insect forms of Trypanosoma brucei by modulating RNA stability and translation. Mol Cell Biol 17: 4372–4380.
[74]  Dzeja P, Terzic A (2009) Adenylate kinase and AMP signaling networks: Metabolic monitoring, signal communication and body energy sensing. Int J Mol Sci 10: 1729–1772. doi: 10.3390/ijms10041729
[75]  Gelperin D, Horton L, Beckman J, Hensold J, Lemmon SK (2001) Bms1p, a novel GTP-binding protein, and the related Tsr1p are required for distinct steps of 40S ribosome biogenesis in yeast. RNA 7: 1268–1283. doi: 10.1017/S1355838201013073
[76]  Vanrobays E, Leplus A, Osheim YN, Beyer AL, Wacheul L, et al. (2008) TOR regulates the subcellular distribution of DIM2, a KH domain protein required for cotranscriptional ribosome assembly and pre-40S ribosome export. RNA 14: 2061–2073. doi: 10.1261/rna.1176708


comments powered by Disqus