All Title Author
Keywords Abstract


Activities of Daily Living Associated with Acquisition of Melioidosis in Northeast Thailand: A Matched Case-Control Study

DOI: 10.1371/journal.pntd.0002072

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Melioidosis is a serious infectious disease caused by the Category B select agent and environmental saprophyte, Burkholderia pseudomallei. Most cases of naturally acquired infection are assumed to result from skin inoculation after exposure to soil or water. The aim of this study was to provide evidence for inoculation, inhalation and ingestion as routes of infection, and develop preventive guidelines based on this evidence. Methods/Principal Findings A prospective hospital-based 1:2 matched case-control study was conducted in Northeast Thailand. Cases were patients with culture-confirmed melioidosis, and controls were patients admitted with non-infectious conditions during the same period, matched for gender, age, and diabetes mellitus. Activities of daily living were recorded for the 30-day period before onset of symptoms, and home visits were performed to obtain drinking water and culture this for B. pseudomallei. Multivariable conditional logistic regression analysis based on 286 cases and 512 controls showed that activities associated with a risk of melioidosis included working in a rice field (conditional odds ratio [cOR] = 2.1; 95% confidence interval [CI] 1.4–3.3), other activities associated with exposure to soil or water (cOR = 1.4; 95%CI 0.8–2.6), an open wound (cOR = 2.0; 95%CI 1.2–3.3), eating food contaminated with soil or dust (cOR = 1.5; 95%CI 1.0–2.2), drinking untreated water (cOR = 1.7; 95%CI 1.1–2.6), outdoor exposure to rain (cOR = 2.1; 95%CI 1.4–3.2), water inhalation (cOR = 2.4; 95%CI 1.5–3.9), current smoking (cOR = 1.5; 95%CI 1.0–2.3) and steroid intake (cOR = 3.1; 95%CI 1.4–6.9). B. pseudomallei was detected in water source(s) consumed by 7% of cases and 3% of controls (cOR = 2.2; 95%CI 0.8–5.8). Conclusions/Significance We used these findings to develop the first evidence-based guidelines for the prevention of melioidosis. These are suitable for people in melioidosis-endemic areas, travelers and military personnel. Public health campaigns based on our recommendations are under development in Thailand.

References

[1]  Aldhous P (2005) Tropical medicine: melioidosis? Never heard of it. Nature 434: 692–693. doi: 10.1038/434692a
[2]  Stone R (2007) Infectious disease. Racing to defuse a bacterial time bomb. Science 317: 1022–1024. doi: 10.1126/science.317.5841.1022
[3]  Currie BJ, Dance DA, Cheng AC (2008) The global distribution of Burkholderia pseudomallei and melioidosis: an update. Trans R Soc Trop Med Hyg 102 Suppl 1: S1–4. doi: 10.1016/S0035-9203(08)70002-6
[4]  Limmathurotsakul D, Wongratanacheewin S, Teerawattanasook N, Wongsuvan G, Chaisuksant S, et al. (2010) Increasing incidence of human melioidosis in Northeast Thailand. Am J Trop Med Hyg 82: 1113–1117. doi: 10.4269/ajtmh.2010.10-0038
[5]  Weissert C, Dollenmaier G, Rafeiner P, Riehm J, Schultze D (2009) Burkholderia pseudomallei misidentified by automated system. Emerg Infect Dis 15: 1799–1801. doi: 10.3201/eid1511.081719
[6]  Ngauy V, Lemeshev Y, Sadkowski L, Crawford G (2005) Cutaneous melioidosis in a man who was taken as a prisoner of war by the Japanese during World War II. J Clin Microbiol 43: 970–972. doi: 10.1128/JCM.43.2.970-972.2005
[7]  Goshorn RK (1987) Recrudescent pulmonary melioidosis. A case report involving the so-called ‘Vietnamese time bomb’. Indiana Med 80: 247–249.
[8]  Limmathurotsakul D, Peacock SJ (2011) Melioidosis: a clinical overview. British medical bulletin 99: 125–139. doi: 10.1093/bmb/ldr007
[9]  Suputtamongkol Y, Chaowagul W, Chetchotisakd P, Lertpatanasuwun N, Intaranongpai S, et al. (1999) Risk factors for melioidosis and bacteremic melioidosis. Clin Infect Dis 29: 408–413. doi: 10.1086/520223
[10]  Currie BJ, Jacups SP, Cheng AC, Fisher DA, Anstey NM, et al. (2004) Melioidosis epidemiology and risk factors from a prospective whole-population study in northern Australia. Trop Med Int Health 9: 1167–1174. doi: 10.1111/j.1365-3156.2004.01328.x
[11]  Howe C, Sampath A, Spotnitz M (1971) The pseudomallei group: a review. J Infect Dis 124: 598–606. doi: 10.1093/infdis/124.6.598
[12]  Cheng AC, Jacups SP, Ward L, Currie BJ (2008) Melioidosis and Aboriginal seasons in northern Australia. Trans R Soc Trop Med Hyg 102 Suppl 1: S26–29. doi: 10.1016/S0035-9203(08)70008-7
[13]  Currie BJ, Jacups SP (2003) Intensity of rainfall and severity of melioidosis, Australia. Emerg Infect Dis 9: 1538–1542. doi: 10.3201/eid0912.020750
[14]  Ko WC, Cheung BM, Tang HJ, Shih HI, Lau YJ, et al. (2007) Melioidosis outbreak after typhoon, southern Taiwan. Emerg Infect Dis 13: 896–898. doi: 10.3201/eid1306.060646
[15]  West TE, Myers ND, Limmathurotsakul D, Liggitt HD, Chantratita N, et al. (2010) Pathogenicity of high-dose enteral inoculation of Burkholderia pseudomallei to mice. The American journal of tropical medicine and hygiene 83: 1066–1069. doi: 10.4269/ajtmh.2010.10-0306
[16]  Inglis TJ, Garrow SC, Henderson M, Clair A, Sampson J, et al. (2000) Burkholderia pseudomallei traced to water treatment plant in Australia. Emerg Infect Dis 6: 56–59. doi: 10.3201/eid0601.000110
[17]  Currie BJ, Mayo M, Anstey NM, Donohoe P, Haase A, et al. (2001) A cluster of melioidosis cases from an endemic region is clonal and is linked to the water supply using molecular typing of Burkholderia pseudomallei isolates. Am J Trop Med Hyg 65: 177–179.
[18]  Faa AG, Holt PJ (2002) Melioidosis in the Torres Strait islands of far North Queensland. Commun Dis Intell 26: 279–283.
[19]  Limmathurotsakul D, Jamsen K, Arayawichanont A, Simpson JA, White LJ, et al. (2010) Defining the true sensitivity of culture for the diagnosis of melioidosis using bayesian latent class models. PLoS One 5: e12485. doi: 10.1371/journal.pone.0012485
[20]  Eaton AD, Clesceri LS, Rice EU, Greenberg AE, Franson MA (2009) Standard Methods for the Examination of Water & Wastewater 20th edition: American Public Health Association.
[21]  Limmathurotsakul D, Wuthiekanun V, Amornchai P, Wongsuwan G, Day NP, et al. (2012) Effectiveness of a simplified method for the isolation of Burkholderia pseudomallei from soil. Appl Environ Microb 78: 876–877. doi: 10.1128/aem.07039-11
[22]  Walsh AL, Wuthiekanun V (1996) The laboratory diagnosis of melioidosis. Br J Biomed Sci 53: 249–253. doi: 10.1128/aem.07039-11
[23]  Bursac Z, Gauss CH, Williams DK, Hosmer DW (2008) Purposeful selection of variables in logistic regression. Source code for biology and medicine 3: 17. doi: 10.1186/1751-0473-3-17
[24]  Provincial Waterworks Authority (2012) Information of Tap Water Supply in Ubon Ratchathani Province [in Thai]. Available: http://www.pwa.co.th/province/cgi-bin/in?dex.php?Province=34. Accessed 1 January 2012
[25]  Titball RW, Russell P, Cuccui J, Easton A, Haque A, et al. (2008) Burkholderia pseudomallei: animal models of infection. Trans R Soc Trop Med Hyg 102 Suppl 1: S111–116. doi: 10.1016/S0035-9203(08)70026-9
[26]  Peacock SJ, Limmathurotsakul D, Lubell Y, Koh GC, White LJ, et al. (2012) Melioidosis vaccines: a systematic review and appraisal of the potential to exploit biodefense vaccines for public health purposes. PLoS neglected tropical diseases 6: e1488. doi: 10.1371/journal.pntd.0001488

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

微信:OALib Journal