All Title Author
Keywords Abstract

Effective Chikungunya Virus-like Particle Vaccine Produced in Insect Cells

DOI: 10.1371/journal.pntd.0002124

Full-Text   Cite this paper   Add to My Lib


The emerging arthritogenic, mosquito-borne chikungunya virus (CHIKV) causes severe disease in humans and represents a serious public health threat in countries where Aedes spp mosquitoes are present. This study describes for the first time the successful production of CHIKV virus-like particles (VLPs) in insect cells using recombinant baculoviruses. This well-established expression system is rapidly scalable to volumes required for epidemic responses and proved well suited for processing of CHIKV glycoproteins and production of enveloped VLPs. Herein we show that a single immunization with 1 μg of non-adjuvanted CHIKV VLPs induced high titer neutralizing antibody responses and provided complete protection against viraemia and joint inflammation upon challenge with the Réunion Island CHIKV strain in an adult wild-type mouse model of CHIKV disease. CHIKV VLPs produced in insect cells using recombinant baculoviruses thus represents as a new, safe, non-replicating and effective vaccine candidate against CHIKV infections.


[1]  Lambrechts L, Scott TW, Gubler DJ (2010) Consequences of the expanding global distribution of Aedes albopictus for dengue virus transmission. PLoS Negl Trop Dis 4: e646. doi: 10.1371/journal.pntd.0000646
[2]  Suhrbier A, Jaffar-Bandjee MC, Gasque P (2012) Arthritogenic alphaviruses–an overview. Nat Rev Rheumatol 8: 420–429. doi: 10.1038/nrrheum.2012.64
[3]  Treble A (2002) Chemical and biological weapons: possession and programs past and present. Monterey Institute of International Studies' James Martin Center for Nonproliferation Studies Web site. Available: Accessed January 29, 2008.
[4]  Schwartz O, Albert ML (2010) Biology and pathogenesis of chikungunya virus. Nat Rev Microbiol 8: 491–500. doi: 10.1038/nrmicro2368
[5]  Khan AH, Morita K, Parquet Md Mdel C, Hasebe F, Mathenge EG, et al. (2002) Complete nucleotide sequence of chikungunya virus and evidence for an internal polyadenylation site. J Gen Virol 83: 3075–3084.
[6]  Schlesinger S, Schlesinger MJ (2001) Togaviridae: the viruses and their replication. Fields virology 1: 895–916.
[7]  Kuhn RJ (2007) Togaviridae: the viruses and their replication. Philadelphia, PA: Lippincott, Williams and Wilkins: 1001–1022.
[8]  Mulvey M, Brown DT (1996) Assembly of the sindbis virus spike protein complex. Virology 219: 125–132. doi: 10.1006/viro.1996.0229
[9]  Li L, Jose J, Xiang Y, Kuhn RJ, Rossmann MG (2010) Structural changes of envelope proteins during alphavirus fusion. Nature 468: 705–708. doi: 10.1038/nature09546
[10]  Harrison VR, Eckels KH, Bartelloni PJ, Hampton C (1971) Production and evaluation of a formalin-killed chikungunya vaccine. J Immunol 107: 643–647.
[11]  Tiwari M, Parida M, Santhosh SR, Khan M, Dash PK, et al. (2009) Assessment of immunogenic potential of Vero adapted formalin inactivated vaccine derived from novel ECSA genotype of chikungunya virus. Vaccine 27: 2513–2522. doi: 10.1016/j.vaccine.2009.02.062
[12]  Gardner J, Anraku I, Le TT, Larcher T, Major L, et al. (2010) Chikungunya virus arthritis in adult wild-type mice. J Virol 84: 8021–8032. doi: 10.1128/JVI.02603-09
[13]  Levitt NH, Ramsburg HH, Hasty SE, Repik PM, Cole FE Jr, et al. (1986) Development of an attenuated strain of chikungunya virus for use in vaccine production. Vaccine 4: 157–162. doi: 10.1016/0264-410X(86)90003-4
[14]  Partidos CD, Paykel J, Weger J, Borland EM, Powers AM, et al. (2012) Cross-protective immunity against o'nyong-nyong virus afforded by a novel recombinant chikungunya vaccine. Vaccine 30: 4638–4643. doi: 10.1016/j.vaccine.2012.04.099
[15]  Plante K, Wang E, Partidos CD, Weger J, Gorchakov R, et al. (2011) Novel chikungunya vaccine candidate with an IRES-based attenuation and host range alteration mechanism. PLoS Pathog 7: e1002142. doi: 10.1371/journal.ppat.1002142
[16]  Wang E, Volkova E, Adams AP, Forrester N, Xiao SY, et al. (2008) Chimeric alphavirus vaccine candidates for chikungunya. Vaccine 26: 5030–5039. doi: 10.1016/j.vaccine.2008.07.054
[17]  Muthumani K, Lankaraman KM, Laddy DJ, Sundaram SG, Chung CW, et al. (2008) Immunogenicity of novel consensus-based DNA vaccines against chikungunya virus. Vaccine 26: 5128–5134. doi: 10.1016/j.vaccine.2008.03.060
[18]  Mallilankaraman K, Shedlock DJ, Bao H, Kawalekar OU, Fagone P, et al. (2011) A DNA vaccine against chikungunya virus is protective in mice and induces neutralizing antibodies in mice and nonhuman primates. PLoS Negl Trop Dis 5: e928. doi: 10.1371/journal.pntd.0000928
[19]  Wang D, Suhrbier A, Penn-Nicholson A, Woraratanadharm J, Gardner J, et al. (2011) A complex adenovirus vaccine against chikungunya virus provides complete protection against viraemia and arthritis. Vaccine 29: 2803–2809. doi: 10.1016/j.vaccine.2011.01.108
[20]  Kumar M, Sudeep AB, Arankalle VA (2012) Evaluation of recombinant E2 protein-based and whole-virus inactivated candidate vaccines against chikungunya virus. Vaccine 30: 6142–6149. doi: 10.1016/j.vaccine.2012.07.072
[21]  Metz SW, Pijlman GP (2011) Arbovirus vaccines; opportunities for the baculovirus-insect cell expression system. Journal of Invertebrate Pathology 107 Suppl: S16–30. doi: 10.1016/j.jip.2011.05.002
[22]  Metz SW, Geertsema C, Martina BE, Andrade P, Heldens JG, et al. (2011) Functional processing and secretion of chikungunya virus E1 and E2 glycoproteins in insect cells. Virol J 8: 353–365. doi: 10.1186/1743-422X-8-353
[23]  Akahata W, Yang ZY, Andersen H, Sun S, Holdaway HA, et al. (2010) A virus-like particle vaccine for epidemic chikungunya virus protects nonhuman primates against infection. Nat Med 16: 334–338. doi: 10.1038/nm.2105
[24]  Edelman R, Ascher MS, Oster CN, Ramsburg HH, Cole FE, et al. (1979) Evaluation in humans of a new, inactivated vaccine for venezuelan equine encephalitis virus (C-84). J Infect Dis 140: 708–715. doi: 10.1093/infdis/140.5.708
[25]  Edelman R, Tacket CO, Wasserman SS, Bodison SA, Perry JG, et al. (2000) Phase II safety and immunogenicity study of live chikungunya virus vaccine TSI-GSD-218. Am J Trop Med Hyg 62: 681–685.
[26]  Kutzler MA, Weiner DB (2008) DNA vaccines: ready for prime time? Nat Rev Genet 9: 776–788. doi: 10.1038/nrg2432
[27]  Couderc T, Khandoudi N, Grandadam M, Visse C, Gangneux N, et al. (2009) Prophylaxis and therapy for chikungunya virus infection. J Infect Dis 200: 516–523. doi: 10.1086/600381
[28]  Rold?o A, Mellado MCM, Castilho LR, Carrondo MJT, Alves PM (2010) Virus-like particles in vaccine development. Expert Rev Vac 9: 1149–1176.
[29]  Summers MD, Smith GE (1987) A manual of methods for baculovirus vectors and insect cell culture procedures. Bulletin B-Texas Agricultural Experiment Station (USA)
[30]  van Oers MM (2006) Vaccines for viral and parasitic diseases produced with baculovirus vectors. Adv Virus Res 68: 193–253. doi: 10.1016/S0065-3527(06)68006-8
[31]  Paavonen J, Lehtinen M (2008) Introducing human papillomavirus vaccines - questions remain. Ann Med 40: 162–166. doi: 10.1080/07853890701802404
[32]  Cox MM, Hollister JR (2009) FluBlok, a next generation influenza vaccine manufactured in insect cells. Biologicals 37: 182–189. doi: 10.1016/j.biologicals.2009.02.014
[33]  Hodgson LA, Ludwig GV, Smith JF (1999) Expression, processing, and immunogenicity of the structural proteins of Venezuelan equine encephalitis virus from recombinant baculovirus vectors. Vaccine 17: 1151–1160. doi: 10.1016/S0264-410X(98)00335-1
[34]  Oker-Blom C, Summers M (1989) Expression of sindbis virus 26S cDNA in Spodoptera frugiperda (Sf9) cells, using a baculovirus expression vector. J Virol 63: 1256–1264.
[35]  Metz SW, Feenstra F, Villoing S, van Hulten MC, van Lent JW, et al. (2011) Low temperature-dependent salmonid alphavirus glycoprotein processing and recombinant virus-like particle formation. PLoS One 6: e25816. doi: 10.1371/journal.pone.0025816
[36]  O'Reilly DR, Miller LK, Luckow VA (1993) Baculovirus expression vectors: a laboratory manual: Oxford University Press, USA.
[37]  Vicente T, Roldao A, Peixoto C, Carrondo MJ, Alves PM (2011) Large-scale production and purification of VLP-based vaccines. J Invertebr Pathol 107 Suppl: S42–48. doi: 10.1016/j.jip.2011.05.004
[38]  Hopkins R, Esposito D (2009) A rapid method for titrating baculovirus stocks using the Sf-9 Easy Titer cell line. Biotechniques 47: 785–788. doi: 10.2144/000113238
[39]  Kaba SA, Salcedo AM, Wafula PO, Vlak JM, van Oers MM (2004) Development of a chitinase and v-cathepsin negative bacmid for improved integrity of secreted recombinant proteins. J Virol Methods 122: 113–118. doi: 10.1016/j.jviromet.2004.07.006
[40]  Rudd PA, Wilson J, Gardner J, Larcher T, Babarit C, et al. (2012) Interferon response factors 3 and 7 protect against Chikungunya virus hemorrhagic fever and shock. J Virol 86: 9888–9898. doi: 10.1128/JVI.00956-12
[41]  Blom N, Sicheritz-Pontén T, Gupta R, Gammeltoft S, Brunak S (2004) Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics 4: 1633–1649. doi: 10.1002/pmic.200300771
[42]  Volkman LE (1986) The 64K envelope protein of budded Autographa californica nuclear polyhedrosis virus. Curr Top Microbiol Immunol 131: 103–118. doi: 10.1007/978-3-642-71589-1_6
[43]  Ozden S, Lucas-Hourani M, Ceccaldi P, Basak A, Valentine M, et al. (2008) Inhibition of chikungunya virus infection in cultured human muscle cells by furin inhibitors. J Biol Chem 283: 21899–21908. doi: 10.1074/jbc.M802444200
[44]  Zhang R, Hryc CF, Cong Y, Liu X, Jakana J, et al. (2011) 4.4 ? cryo-EM structure of an enveloped alphavirus Venezuelan equine encephalitis virus. EMBO J 30(18): 3854–63. doi: 10.1038/emboj.2011.261
[45]  Oker-Blom C, Blomster M, Osterblad M, Schmidt M, Akerman K, et al. (1995) Synthesis and processing of the rubella virus p110 polyprotein precursor in baculovirus-infected Spodoptera frugiperda cells. Virus Res 35: 71–79. doi: 10.1016/0168-1702(94)00079-R
[46]  Cho B, Jeon BY, Kim J, Noh J, Kim J, et al. (2008) Expression and evaluation of chikungunya virus E1 and E2 envelope proteins for serodiagnosis of chikungunya virus infection. Yonsei Med J 49: 828–835. doi: 10.3349/ymj.2008.49.5.828
[47]  Aichinger G, Ehrlich HJ, Aaskov JG, Fritsch S, Thomasser C, et al. (2011) Safety and immunogenicity of an inactivated whole virus Vero cell-derived Ross River virus vaccine: a randomized trial. Vaccine 29: 9376–9384. doi: 10.1016/j.vaccine.2011.09.125
[48]  Nimmerjahn F, Ravetch JV (2006) Fcgamma receptors: old friends and new family members. Immunity 24: 19–28. doi: 10.1016/j.immuni.2005.11.010
[49]  Tomiya N, Narang S, Lee YC, Betenbaugh MJ (2004) Comparing N-glycan processing in mammalian cell lines to native and engineered lepidopteran insect cell lines. Glycoconj J 21: 343–360. doi: 10.1023/B:GLYC.0000046275.28315.87
[50]  Gavrilov BK, Rogers K, Fernandez-Sainz IJ, Holinka LG, Borca MV, et al. (2011) Effects of glycosylation on antigenicity and immunogenicity of classical swine fever virus envelope proteins. Virology 420: 135–145. doi: 10.1016/j.virol.2011.08.025
[51]  Helle F, Vieyres G, Elkrief L, Popescu CI, Wychowski C, et al. (2010) Role of N-linked glycans in the functions of hepatitis C virus envelope proteins incorporated into infectious virions. J Virol 84: 11905–11915. doi: 10.1128/JVI.01548-10
[52]  Cox MM, Hashimoto Y (2011) A fast track influenza virus vaccine produced in insect cells. J Invertebr Pathol 107 Suppl: S31–41. doi: 10.1016/j.jip.2011.05.003
[53]  van Oers MM (2011) Opportunities and challenges for the baculovirus expression system. J Invertebr Pathol 107 Suppl: S3–15. doi: 10.1016/j.jip.2011.05.001


comments powered by Disqus