All Title Author
Keywords Abstract


Phylogenetic Analysis Reveals a High Prevalence of Sporothrix brasiliensis in Feline Sporotrichosis Outbreaks

DOI: 10.1371/journal.pntd.0002281

Full-Text   Cite this paper   Add to My Lib

Abstract:

Sporothrix schenckii, previously assumed to be the sole agent of human and animal sporotrichosis, is in fact a species complex. Recently recognized taxa include S. brasiliensis, S. globosa, S. mexicana, and S. luriei, in addition to S. schenckii sensu stricto. Over the last decades, large epidemics of sporotrichosis occurred in Brazil due to zoonotic transmission, and cats were pointed out as key susceptible hosts. In order to understand the eco-epidemiology of feline sporotrichosis and its role in human sporotrichosis a survey was conducted among symptomatic cats. Prevalence and phylogenetic relationships among feline Sporothrix species were investigated by reconstructing their phylogenetic origin using the calmodulin (CAL) and the translation elongation factor-1 alpha (EF1α) loci in strains originated from Rio de Janeiro (RJ, n = 15), Rio Grande do Sul (RS, n = 10), Paraná (PR, n = 4), S?o Paulo (SP, n = 3) and Minas Gerais (MG, n = 1). Our results showed that S. brasiliensis is highly prevalent among cats (96.9%) with sporotrichosis, while S. schenckii was identified only once. The genotype of Sporothrix from cats was found identical to S. brasiliensis from human sources confirming that the disease is transmitted by cats. Sporothrix brasiliensis presented low genetic diversity compared to its sister taxon S. schenckii. No evidence of recombination in S. brasiliensis was found by split decomposition or PHI-test analysis, suggesting that S. brasiliensis is a clonal species. Strains recovered in states SP, MG and PR share the genotype of the RJ outbreak, different from the RS clone. The occurrence of separate genotypes among strains indicated that the Brazilian S. brasiliensis epidemic has at least two distinct sources. We suggest that cats represent a major host and the main source of cat and human S. brasiliensis infections in Brazil.

References

[1]  Lutz A, Splendore A (1907) On a mycosis observed in men and mice: Contribution to the knowledge of the so-called sporotrichosis. Revista Médica de S?o Paulo 21: 443–450 [in Portuguese].
[2]  Pereira SA, Menezes RC, Gremi?o IDF, Silva JN, de O. Honse C, et al. (2011) Sensitivity of cytopathological examination in the diagnosis of feline sporotrichosis. J Feline Med Surg 13: 220–223 doi: 10.1016/j.jfms.2010.10.007.
[3]  Schubach A, Schubach TM, Barros MB, Wanke B (2005) Cat-transmitted sporotrichosis, Rio de Janeiro, Brazil. Emerg Infect Dis 11: 1952–1954 doi: 10.3201/eid1112.040891.
[4]  Schubach TM, Schubach A, Okamoto T, Barros MB, Figueiredo FB, et al. (2004) Evaluation of an epidemic of sporotrichosis in cats: 347 cases (1998–2001). J Am Vet Med Assoc 224: 1623–1629 doi: 10.2460/javma.2004.224.1623.
[5]  Mackinnon JE, Conti-Díaz IA, Gezuele E, Civila E, Da Luz S (1969) Isolation of Sporothrix schenckii from nature and considerations on its pathogenicity and ecology. Sabouraudia 7: 38–45 doi:10.1080/00362177085190071.
[6]  Fernandes KSS, Coelho ALJ, Bezerra LML, Barja-Fidalgo C (2000) Virulence of Sporothrix schenckii conidia and yeast cells, and their susceptibility to nitric oxide. Immunology 101: 563–569 doi: 10.1046/j.1365-2567.2000.00125.x.
[7]  Klein BS, Tebbets B (2007) Dimorphism and virulence in fungi. Curr Opin Microbiol 10: 314–319 doi: 10.1016/j.mib.2007.04.002.
[8]  Pappas PG, Tellez I, Deep AE, Nolasco D, Holgado W, et al. (2000) Sporotrichosis in Peru: Description of an area of hyperendemicity. Clin Infect Dis 30: 65–70 doi: 10.1086/313607.
[9]  Rippon JW (1988) Medical Mycology– The pathogenic fungi and the pathogenic actinomycetes. Philadelphia, PA : W. B. Saunders Company.
[10]  Verma S, Verma GK, Singh G, Kanga A, Shanker V, et al. (2012) Sporotrichosis in Sub-Himalayan India. PLoS Negl Trop Dis 6: e1673 doi:10.1371/journal.pntd.0001673.
[11]  Rodrigues AM, de Hoog S, de Camargo ZP (2012) Emergence of pathogenicity in the Sporothrix schenckii complex. Med Mycol 51: 405–412 doi:10.3109/13693786.2012.719648.
[12]  Silva-Vergara ML, de Camargo ZP, Silva PF, Abdalla MR, Sgarbieri RN, et al. (2012) Disseminated Sporothrix brasiliensis infection with endocardial and ocular involvement in an HIV-infected patient. Am J Trop Med Hyg 86: 477–480 doi: 10.4269/ajtmh.2012.11-0441.
[13]  Zhou X, Rodrigues AM, Feng P, Hoog GS (2013) Global ITS diversity in the Sporothrix schenckii complex. Fungal Divers 1–13 doi: 10.1007/s13225-013-0220-2.
[14]  de Meyer EM, de Beer ZW, Summerbell RC, Moharram AM, de Hoog GS, et al. (2008) Taxonomy and phylogeny of new wood- and soil-inhabiting Sporothrix species in the Ophiostoma stenoceras-Sporothrix schenckii complex. Mycologia 100: 647–661 doi: 10.3852/07-157R.
[15]  Madrid H, Cano J, Gene J, Bonifaz A, Toriello C, et al. (2009) Sporothrix globosa, a pathogenic fungus with widespread geographical distribution. Rev Iberoam Micol 26: 218–222 doi: 10.1016/j.riam.2009.02.005.
[16]  Madrid H, Gené J, Cano J, Silvera C, Guarro J (2010) Sporothrix brunneoviolacea and Sporothrix dimorphospora, two new members of the Ophiostoma stenoceras-Sporothrix schenckii complex. Mycologia 102: 1193–1203 doi: 10.3852/09-320.
[17]  Marimon R, Cano J, Gené J, Sutton DA, Kawasaki M, et al. (2007) Sporothrix brasiliensis, S. globosa, and S. mexicana, three new Sporothrix species of clinical interest. J Clin Microbiol 45: 3198–3206 doi: 10.1128/JCM.00808-07.
[18]  Marimon R, Gené J, Cano J, Guarro J (2008) Sporothrix luriei: a rare fungus from clinical origin. Med Mycol 46: 621–625 doi: 10.1080/13693780801992837.
[19]  Marimon R, Gené J, Cano J, Trilles L, dos Santos Lazéra M, et al. (2006) Molecular phylogeny of Sporothrix schenckii. J Clin Microbiol 44: 3251–3256 doi: 10.1128/JCM.00081-06.
[20]  Arrillaga-Moncrieff I, Capilla J, Mayayo E, Marimon R, Mariné M, et al. (2009) Different virulence levels of the species of Sporothrix in a murine model. Clin Microbiol Infect 15: 651–655 doi: 10.1111/j.1469-0691.2009.02824.x.
[21]  Fernandes GF, dos Santos PO, Rodrigues AM, Sasaki AA, Burger E, et al. (2013) Characterization of virulence profile, protein secretion and immunogenicity of different Sporothrix schenckii sensu stricto isolates compared with S. globosa and S. brasiliensis species. Virulence 4(3): 1–9 doi: 10.4161/viru.23112.
[22]  Marimon R, Serena C, Gené J, Cano J, Guarro J (2008) In vitro antifungal susceptibilities of five species of Sporothrix. Antimicrob Agents Chemother 52: 732–734 doi: 10.1128/AAC.01012-07.
[23]  Barros MBL, Schubach AdO, do Valle ACF, Galhardo MCG, Concei??o-Silva F, et al. (2004) Cat-transmitted sporotrichosis epidemic in Rio de Janeiro, Brazil: Description of a series of cases. Clin Infect Dis 38: 529–535 doi: 10.1086/381200.
[24]  Barros MBL, Schubach TP, Coll JO, Gremi?o ID, Wanke B, et al. (2010) Sporotrichosis: development and challenges of an epidemic. Rev Panam Salud Publica 27: 455–460 doi: []10.1590/S1020-49892010000600007 [in Portuguese].
[25]  da Rosa ACM, Scroferneker ML, Vettorato R, Gervini RL, Vettorato G, et al. (2005) Epidemiology of sporotrichosis: A study of 304 cases in Brazil. J Am Acad Dermatol 52: 451–459 doi: 10.1016/j.jaad.2004.11.046.
[26]  Madrid IM, Mattei AS, Fernandes CG, Oliveira Nobre M, Meireles MCA (2012) Epidemiological findings and laboratory evaluation of sporotrichosis: A description of 103 cases in cats and dogs in Southern Brazil. Mycopathologia 173: 265–273 doi: 10.1007/s11046-011-9509-4.
[27]  Mesa-Arango AC, del Rocío Reyes-Montes M, Pérez-Mejía A, Navarro-Barranco H, Souza V, et al. (2002) Phenotyping and genotyping of Sporothrix schenckii isolates according to geographic origin and clinical form of sporotrichosis. J Clin Microbiol 40: 3004–3011 doi: 10.1128/JCM.40.8.3004-3011.2002.
[28]  O'Donnell K, Nirenberg H, Aoki T, Cigelnik E (2000) A multigene phylogeny of the Gibberella fujikuroi species complex: Detection of additional phylogenetically distinct species. Mycoscience 41: 61–78 doi: 10.1007/BF02464387.
[29]  Katoh K, Misawa K, Kuma Ki, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30: 3059–3066 doi: 10.1093/nar/gkf436.
[30]  Duong TA, de Beer ZW, Wingfield BD, Wingfield MJ (2012) Phylogeny and taxonomy of species in the Grosmannia serpens complex. Mycologia 104: 715–732 doi: 10.3852/11-109.
[31]  Spatafora JW, Sung G-H, Johnson D, Hesse C, O'Rourke B, et al. (2006) A five-gene phylogeny of Pezizomycotina. Mycologia 98: 1018–1028 doi: 10.3852/mycologia.98.6.1018.
[32]  Zipfel RD, de Beer ZW, Jacobs K, Wingfield BD, Wingfield MJ (2006) Multi-gene phylogenies define Ceratocystiopsis and Grosmannia distinct from Ophiostoma. Stud Mycol 55: 75–97 doi: 10.3114/sim.55.1.75.
[33]  Tamura K, Peterson D, Peterson N, Stecher G, Nei M, et al. (2011) MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739 doi: 10.1093/molbev/msr121.
[34]  Hillis DM, Bull JJ (1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst Biol 42: 182–192 doi: 10.1093/sysbio/42.2.182.
[35]  Tamura K (1992) Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C-content biases. Mol Biol Evol 9: 678–687.
[36]  Rannala B, Yang Z (1996) Probability distribution of molecular evolutionary trees: A new method of phylogenetic inference. J Mol Evol 43: 304–311 doi: 10.1007/BF02338839.
[37]  Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451–1452 doi: 10.1093/bioinformatics/btp187.
[38]  Bandelt HJ, Forster P, R?hl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16: 37–48. doi: 10.1093/oxfordjournals.molbev.a026036
[39]  Bandelt H-J, Dress AWM (1992) Split decomposition: A new and useful approach to phylogenetic analysis of distance data. Mol Phylogenet Evol 1: 242–252 doi: 10.1016/1055-7903(92)90021-8.
[40]  Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23: 254–267 doi: 10.1093/molbev/msj030.
[41]  Bruen TC, Philippe H, Bryant D (2006) A simple and robust statistical test for detecting the presence of recombination. Genetics 172: 2665–2681 doi: 10.1534/genetics.105.048975.
[42]  Salemi M, Gray RR, Goodenow MM (2008) An exploratory algorithm to identify intra-host recombinant viral sequences. Mol Phylogenet Evol 49: 618–628 doi: 10.1016/j.ympev.2008.08.017.
[43]  Rozas J, Rozas R (1995) DnaSP, DNA sequence polymorphism: an interactive program for estimating population genetics parameters from DNA sequence data. Comput Appl Biosci 11: 621–625 doi: 10.1093/bioinformatics/11.6.621.
[44]  Hudson RR, Kaplan NL (1985) Statistical properties of the number of recombination events in the history of a sample of DNA sequences. Genetics 111: 147–164. doi: 10.1093/bioinformatics/11.6.621
[45]  de Oliveira MME, Sampaio P, Almeida-Paes R, Pais C, Gutierrez-Galhardo MC, et al. (2012) Rapid identification of Sporothrix species by T3B fingerprinting. J Clin Microbiol 50: 2159–2162 doi: 10.1128/JCM.00450-12.
[46]  Tibayrenc M, Ayala FJ (2012) Reproductive clonality of pathogens: a perspective on pathogenic viruses, bacteria, fungi, and parasitic protozoa. Proc Natl Acad Sci U S A 109: E3305–3313 doi: 10.1073/pnas.1212452109.
[47]  Billiard S, López-Villavicencio M, Devier B, Hood ME, Fairhead C, et al. (2011) Having sex, yes, but with whom? Inferences from fungi on the evolution of anisogamy and mating types. Biol Rev Camb Philos Soc 86: 421–442 doi: 10.1111/j.1469-185X.2010.00153.x.
[48]  Gr?ser Y, de Hoog S, Summerbell RC (2006) Dermatophytes: recognizing species of clonal fungi. Med Mycol 44: 199–209 doi: doi:10.1080/13693780600606810.
[49]  Henk DA, Eagle CE, Brown K, Van den Berg MA, Dyer PS, et al. (2011) Speciation despite globally overlapping distributions in Penicillium chrysogenum: the population genetics of Alexander Fleming's lucky fungus. Mol Ecol 20: 4288–4301 doi: 10.1111/j.1365-294X.2011.05244.x.
[50]  Henk DA, Shahar-Golan R, Devi KR, Boyce KJ, Zhan N, et al. (2012) Clonality despite sex: The evolution of host-associated sexual neighborhoods in the pathogenic fungus Penicillium marneffei. PLoS Pathog 8: e1002851 doi:10.1371/journal.ppat.1002851.
[51]  Fisher MC, Aanensen D, de Hoog S, Vanittanakom N (2004) Multilocus microsatellite typing system for Penicillium marneffei reveals spatially structured populations. J Clin Microbiol 42: 5065–5069 doi: 10.1128/JCM.42.11.5065-5069.2004.
[52]  Fisher MC, Hanage WP, de Hoog S, Johnson E, Smith MD, et al. (2005) Low effective dispersal of asexual genotypes in heterogeneous landscapes by the endemic pathogen Penicillium marneffei. PLoS Pathog 1: e20 doi:10.1371/journal.ppat.0010020.
[53]  Chowdhary A, Hiremath SS, Sun S, Kowshik T, Randhawa HS, et al. (2011) Genetic differentiation, recombination and clonal expansion in environmental populations of Cryptococcus gattii in India. Environ Microbiol 13: 1875–1888 doi: 10.1111/j.1462-2920.2011.02510.x.
[54]  Halliday CL, Carter DA (2003) Clonal reproduction and limited dispersal in an environmental population of Cryptococcus neoformans var. gattii isolates from Australia. J Clin Microbiol 41: 703–711 doi: 10.1128/JCM.41.2.703-711.2003.
[55]  James TY, Litvintseva AP, Vilgalys R, Morgan JAT, Taylor JW, et al. (2009) Rapid global expansion of the fungal disease chytridiomycosis into declining and healthy amphibian populations. PLoS Pathog 5: e1000458 doi:10.1371/journal.ppat.1000458.
[56]  Barker BM, Jewell KA, Kroken S, Orbach MJ (2007) The population biology of Coccidioides: epidemiologic implications for disease outbreaks. Ann N Y Acad Sci 1111: 147–163 doi: 10.1196/annals.1406.040.
[57]  Fisher MC, Koenig GL, White TJ, Taylor JW (2000) Pathogenic clones versus environmentally driven population increase: Analysis of an epidemic of the human fungal pathogen Coccidioides immitis. J Clin Microbiol 38: 807–813.
[58]  Fisher MC, Rannala B, Chaturvedi V, Taylor JW (2002) Disease surveillance in recombining pathogens: Multilocus genotypes identify sources of human Coccidioides infections. Proc Natl Acad Sci U S A 99: 9067–9071 doi: 10.1073/pnas.132178099.
[59]  Matute DR, McEwen JG, Puccia R, Montes BA, San-Blas G, et al. (2006) Cryptic speciation and recombination in the fungus Paracoccidioides brasiliensis as revealed by gene genealogies. Mol Biol Evol 23: 65–73 doi: 10.1093/molbev/msj008.
[60]  Teixeira MM, Theodoro RC, de Carvalho MJA, Fernandes L, Paes HC, et al. (2009) Phylogenetic analysis reveals a high level of speciation in the Paracoccidioides genus. Mol Phylogenet Evol 52: 273–283 doi: 10.1016/j.ympev.2009.04.005.
[61]  Theodoro RC, Teixeira MdM, Felipe MSS, Paduan KdS, Ribolla PM, et al. (2012) Genus Paracoccidioides: Species recognition and biogeographic aspects. PLoS ONE 7: e37694 doi:10.1371/journal.pone.0037694.
[62]  Kedes LH, Siemienski J, Braude AI (1964) The syndrome of the alcoholic rose gardener. Sporotrichosis of the radial tendon sheath. Report of a case cured with Amphotericin B. Ann Intern Med 61: 1139–1141. doi: 10.7326/0003-4819-61-6-1139
[63]  Coles FB, Schuchat A, Hibbs JR, Kondracki SF, Salkin IF, et al. (1992) A multistate outbreak of sporotrichosis associated with Sphagnum moss. Am J Epidemiol 136: 475–487.
[64]  Dixon DM, Salkin IF, Duncan RA, Hurd NJ, Haines JH, et al. (1991) Isolation and characterization of Sporothrix schenckii from clinical and environmental sources associated with the largest U.S. epidemic of sporotrichosis. J Clin Microbiol 29: 1106–1113.
[65]  Gastineau F, Spolyar L, Haynes E (1941) Sporotrichosis: Report of six cases among florists. JAMA 117: 1074–1077 doi:10.1001/jama.1941.02820390016005.
[66]  Feeney KT, Arthur IH, Whittle AJ, Altman SA, Speers DJ (2007) Outbreak of sporotrichosis, Western Australia. Emerg Infect Dis 13: 1228–1231 doi: 10.3201/eid1308.061462.
[67]  Roets F, Wingfield BD, de Beer ZW, Wingfield MJ, Dreyer LL (2010) Two new Ophiostoma species from Protea caffra in Zambia. Persoonia 24: 18–28 doi: 10.3767/003158510X490392.
[68]  Zhou X, de Beer ZW, Wingfield MJ (2006) DNA sequence comparisons of Ophiostoma spp., including Ophiostoma aurorae sp. nov., associated with pine bark beetles in South Africa. Stud Mycol 55: 269–277 doi: 10.3114/sim.55.1.269.
[69]  Barros MBL, Schubach AO, Schubach TMP, Wanke B, Lambert-Passos SR (2008) An epidemic of sporotrichosis in Rio de Janeiro, Brazil: epidemiological aspects of a series of cases. Epidemiol Infect 136: 1192–1196 doi: 10.1017/S0950268807009727.
[70]  de Lima Barros MB, Schubach AO, de Vasconcellos Carvalhaes de Oliveira R, Martins EB, Teixeira JL, et al. (2011) Treatment of cutaneous sporotrichosis with Itraconazole—Study of 645 patients. Clin Infect Dis 52: e200–e206 doi: 10.1093/cid/cir245.
[71]  Dangerfield LF, Gear J (1941) Sporotrichosis among miners on the Witwatersrand gold mines. SA Medical Journal April 128–131.
[72]  Vismer HF, Hull PR (1997) Prevalence, epidemiology and geographical distribution of Sporothrix schenckii infections in Gauteng, South Africa. Mycopathologia 137: 137–143 doi: 10.1023/A:1006830131173.
[73]  Mehta KIS, Sharma NL, Kanga AK, Mahajan VK, Ranjan N (2007) Isolation of Sporothrix schenckii from the environmental sources of cutaneous sporotrichosis patients in Himachal Pradesh, India: results of a pilot study. Mycoses 50: 496–501 doi:10.1111/j.1439-0507.2007.014.
[74]  O'Reilly LC, Altman SA (2006) Macrorestriction analysis of clinical and environmental isolates of Sporothrix schenckii. J Clin Microbiol 44: 2547–2552 doi: 10.1128/JCM.00078-06.
[75]  Song Y, Li SS, Zhong SX, Liu YY, Yao L, et al. (2013) Report of 457 sporotrichosis cases from Jilin province, northeast China, a serious endemic region. J Eur Acad Dermatol Venereol 27: 313–318 doi: 10.1111/j.1468-3083.2011.04389.x.
[76]  Kusuhara M, Hachisuka H, Sasai Y (1988) Statistical survey of 150 cases with sporotrichosis. Mycopathologia 102: 129–133 doi: 10.1007/BF00437450.
[77]  Le Clec'h W, Braquart-Varnier C, Raimond M, Ferdy J-B, Bouchon D, et al. (2012) High virulence of Wolbachia after host switching: When autophagy hurts. PLoS Pathog 8: e1002844 doi:10.1371/journal.ppat.1002844.
[78]  Mu J, Joy DA, Duan J, Huang Y, Carlton J, et al. (2005) Host switch leads to emergence of Plasmodium vivax malaria in humans. Mol Biol Evol 22: 1686–1693 doi: 10.1093/molbev/msi160.
[79]  Nelson MI, Viboud C, Simonsen L, Bennett RT, Griesemer SB, et al. (2008) Multiple reassortment events in the evolutionary history of H1N1 Influenza A Virus since 1918. PLoS Pathog 4: e1000012 doi:10.1371/journal.ppat.1000012.
[80]  Johnson L, Johnson R, Akamatsu H, Salamiah A, Otani H, et al. (2001) Spontaneous loss of a conditionally dispensable chromosome from the Alternaria alternata apple pathotype leads to loss of toxin production and pathogenicity. Curr Genet 40: 65–72 doi: 10.1007/s002940100233.
[81]  Ma L-J, van der Does HC, Borkovich KA, Coleman JJ, Daboussi M-J, et al. (2010) Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 464: 367–373 doi:10.1038/nature08850.
[82]  Park RF, Wellings CR (2012) Somatic hybridization in the Uredinales. Annu Rev Phytopathol 50: 219–239 doi: 10.1146/annurev-phyto-072910-095405.
[83]  Forche A, Alby K, Schaefer D, Johnson AD, Berman J, et al. (2008) The parasexual cycle in Candida albicans provides an alternative pathway to meiosis for the formation of recombinant strains. PLoS Biol 6: e110 doi:10.1371/journal.pbio.0060121.
[84]  Schoustra SE, Debets AJM, Slakhorst M, Hoekstra RF (2007) Mitotic recombination accelerates adaptation in the fungus Aspergillus nidulans. PLoS Genet 3: e68 doi:10.1371/journal.pgen.0030068.
[85]  Inami K, Yoshioka-Akiyama C, Morita Y, Yamasaki M, Teraoka T, et al. (2012) A genetic mechanism for emergence of races in Fusarium oxysporum f. sp. lycopersici: Inactivation of avirulence gene AVR1 by transposon insertion. PLoS ONE 7: e44101 doi:10.1371/journal.pone.0044101.
[86]  Goss EM, Cardenas ME, Myers K, Forbes GA, Fry WE, et al. (2011) The plant pathogen Phytophthora andina emerged via hybridization of an unknown Phytophthora species and the Irish potato famine pathogen, P. infestans. PLoS ONE 6: e24543 doi:10.1371/journal.pone.0024543.
[87]  Stukenbrock EH, Christiansen FB, Hansen TT, Dutheil JY, Schierup MH (2012) Fusion of two divergent fungal individuals led to the recent emergence of a unique widespread pathogen species. Proc Natl Acad Sci U S A 109: 10954–10959 doi: 10.1073/pnas.1201403109.
[88]  Farrer RA, Weinert LA, Bielby J, Garner TWJ, Balloux F, et al. (2011) Multiple emergences of genetically diverse amphibian-infecting chytrids include a globalized hypervirulent recombinant lineage. Proc Natl Acad Sci U S A 108(46): 18732–18736 doi: 10.1073/pnas.1111915108.
[89]  Brasier CM, Kirk SA (2010) Rapid emergence of hybrids between the two subspecies of Ophiostoma novo-ulmi with a high level of pathogenic fitness. Plant Pathol 59: 186–199 doi: 10.1111/j.1365-3059.2009.02157.x.
[90]  Hilmer S, Algar D, Neck D, Schleucher E (2010) Remote sensing of physiological data: Impact of long term captivity on body temperature variation of the feral cat (Felis catus) in Australia, recorded via Thermochron iButtons. J Therm Biol 35: 205–210 doi: 10.1016/j.jtherbio.2010.05.002.
[91]  Casadevall A (2012) Fungi and the rise of mammals. PLoS Pathog 8: e1002808 doi:10.1371/journal.ppat.1002808.
[92]  Casadevall A, Fang FC, Pirofski L-a (2011) Microbial virulence as an emergent property: Consequences and opportunities. PLoS Pathog 7: e1002136 doi:10.1371/journal.ppat.1002136.
[93]  Robert VA, Casadevall A (2009) Vertebrate endothermy restricts most fungi as potential pathogens. J Infect Dis 200: 1623–1626 doi: 10.1086/644642.
[94]  Chaves AR, de Campos MP, Barros MBL, do Carmo CN, Gremi?o IDF, et al. (2013) Treatment abandonment in feline sporotrichosis – Study of 147 cases. Zoonoses Public Health 60: 149–153 doi: 10.1111/j.1863-2378.2012.01506.x.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

微信:OALib Journal