全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Expression of Cytosolic Peroxiredoxins in Plasmodium berghei Ookinetes Is Regulated by Environmental Factors in the Mosquito Bloodmeal

DOI: 10.1371/journal.ppat.1003136

Full-Text   Cite this paper   Add to My Lib

Abstract:

The Plasmodium ookinete develops over several hours in the bloodmeal of its mosquito vector where it is exposed to exogenous stresses, including cytotoxic reactive oxygen species (ROS). How the parasite adapts to these challenging conditions is not well understood. We have systematically investigated the expression of three cytosolic antioxidant proteins, thioredoxin-1 (Trx-1), peroxiredoxin-1 (TPx-1), and 1-Cys peroxiredoxin (1-Cys Prx), in developing ookinetes of the rodent parasite Plasmodium berghei under various growth conditions. Transcriptional profiling showed that tpx-1 and 1-cys prx but not trx-1 are more strongly upregulated in ookinetes developing in the mosquito bloodmeal when compared to ookinetes growing under culture conditions. Confocal immunofluorescence imaging revealed comparable expression patterns on the corresponding proteins. 1-Cys Prx in particular exhibited strong expression in mosquito-derived ookinetes but was not detectable in cultured ookinetes. Furthermore, ookinetes growing in culture upregulated tpx-1 and 1-cys prx when challenged with exogenous ROS in a dose-dependent fashion. This suggests that environmental factors in the mosquito bloodmeal induce upregulation of cytosolic antioxidant proteins in Plasmodium ookinetes. We found that in a parasite line lacking TPx-1 (TPx-1KO), expression of 1-Cys Prx occurred significantly earlier in mosquito-derived TPx-1KO ookinetes when compared to wild type (WT) ookinetes. The protein was also readily detectable in cultured TPx-1KO ookinetes, indicating that 1-Cys Prx at least in part compensates for the loss of TPx-1 in vivo. We hypothesize that this dynamic expression of the cytosolic peroxiredoxins reflects the capacity of the developing Plasmodium ookinete to rapidly adapt to the changing conditions in the mosquito bloodmeal. This would significantly increase its chances of survival, maturation and subsequent escape. Our results also emphasize that environmental conditions must be taken into account when investigating Plasmodium-mosquito interactions.

References

[1]  Billker O, Lindo V, Panico M, Etienne AE, Paxton T, et al. (1998) Identification of xanthurenic acid as the putative inducer of malaria development in the mosquito. Nature 392: 289–292. doi: 10.1038/32667
[2]  Alavi Y, Arai M, Mendoza J, Tufet-Bayona M, Sinha R, et al. (2003) The dynamics of interactions between Plasmodium and the mosquito: a study of the infectivity of Plasmodium berghei and Plasmodium gallinaceum, and their transmission by Anopheles stephensi, Anopheles gambiae and Aedes aegypti. Int J Parasitol 33: 933–943. doi: 10.1016/j.ijpara.2003.05.001
[3]  Arambage SC, Grant KM, Pardo I, Ranford-Cartwright L, Hurd H (2009) Malaria ookinetes exhibit multiple markers for apoptosis-like programmed cell death in vitro. Parasit Vectors 2: 32. doi: 10.1186/1756-3305-2-32
[4]  Margos G, Navarette S, Butcher G, Davies A, Willers C, et al. (2001) Interaction between host complement and mosquito-midgut-stage Plasmodium berghei. Infect Immun 69: 5064–5071. doi: 10.1128/iai.69.8.5064-5071.2001
[5]  Luckhart S, Vodovotz Y, Cui L, Rosenberg R (1998) The mosquito Anopheles stephensi limits malaria parasite development with inducible synthesis of nitric oxide. Proc Natl Acad Sci U S A 95: 5700–5705. doi: 10.1073/pnas.95.10.5700
[6]  Han YS, Thompson J, Kafatos FC, Barillas-Mury C (2000) Molecular interactions between Anopheles stephensi midgut cells and Plasmodium berghei: the time bomb theory of ookinete invasion of mosquitoes. Embo J 19: 6030–6040. doi: 10.1093/emboj/19.22.6030
[7]  Molina-Cruz A, DeJong RJ, Charles B, Gupta L, Kumar S, et al. (2008) Reactive oxygen species modulate Anopheles gambiae immunity against bacteria and Plasmodium. J Biol Chem 283: 3217–3223. doi: 10.1074/jbc.m705873200
[8]  Cirimotich CM, Dong Y, Garver LS, Sim S, Dimopoulos G (2010) Mosquito immune defenses against Plasmodium infection. Dev Comp Immunol 34: 387–395. doi: 10.1016/j.dci.2009.12.005
[9]  Sinden RE, Alavi Y, Butcher G, Dessens JT, Raine JD, et al.. (2004) Ookinete cell biology. In: Waters AP, Janse CJ, editors. Malaria Parasites: Genomes and Molecular Biology. Norfolk NR 18 0JA: Caister Academic Press. pp. 475–500.
[10]  WHO (2011) World Malaria Report.
[11]  Muller S (2004) Redox and antioxidant systems of the malaria parasite Plasmodium falciparum. Mol Microbiol 53: 1291–1305. doi: 10.1111/j.1365-2958.2004.04257.x
[12]  Nickel C, Rahlfs S, Deponte M, Koncarevic S, Becker K (2006) Thioredoxin networks in the malarial parasite Plasmodium falciparum. Antioxid Redox Signal 8: 1227–1239. doi: 10.1089/ars.2006.8.1227
[13]  Deponte M, Rahlfs S, Becker K (2007) Peroxiredoxin systems of protozoal parasites. Subcell Biochem 44: 219–229. doi: 10.1007/978-1-4020-6051-9_10
[14]  Sturm N, Jortzik E, Mailu BM, Koncarevic S, Deponte M, et al. (2009) Identification of proteins targeted by the thioredoxin superfamily in Plasmodium falciparum. PLoS Pathog 5: e1000383. doi: 10.1371/journal.ppat.1000383
[15]  Kawazu SI, Komaki-Yasuda K, Oku H, Kano S (2008) Peroxiredoxins in malaria parasites: Parasitologic aspects. Parasitol Int 57: 1–7. doi: 10.1016/j.parint.2007.08.001
[16]  Kanzok SM, Schirmer RH, Turbachova I, Iozef R, Becker K (2000) The thioredoxin system of the malaria parasite Plasmodium falciparum. Glutathione reduction revisited. J Biol Chem 275: 40180–40186. doi: 10.1074/jbc.m007633200
[17]  Rhee SG, Chae HZ, Kim K (2005) Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Radic Biol Med 38: 1543–1552. doi: 10.1016/j.freeradbiomed.2005.02.026
[18]  Gardner MJ, Hall N, Fung E, White O, Berriman M, et al. (2002) Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419: 498–511. doi: 10.1038/nature01097
[19]  Kawazu S, Tsuji N, Hatabu T, Kawai S, Matsumoto Y, et al. (2000) Molecular cloning and characterization of a peroxiredoxin from the human malaria parasite Plasmodium falciparum. Mol Biochem Parasitol 109: 165–169. doi: 10.1016/s0166-6851(00)00243-7
[20]  Kawazu S, Komaki K, Tsuji N, Kawai S, Ikenoue N, et al. (2001) Molecular characterization of a 2-Cys peroxiredoxin from the human malaria parasite Plasmodium falciparum. Mol Biochem Parasitol 116: 73–79. doi: 10.1016/s0166-6851(01)00308-5
[21]  Boucher IW, McMillan PJ, Gabrielsen M, Akerman SE, Brannigan JA, et al. (2006) Structural and biochemical characterization of a mitochondrial peroxiredoxin from Plasmodium falciparum. Mol Microbiol 61: 948–959. doi: 10.1111/j.1365-2958.2006.05303.x
[22]  Akerman SE, Muller S (2003) 2-Cys peroxiredoxin PfTrx-Px1 is involved in the antioxidant defence of Plasmodium falciparum. Mol Biochem Parasitol 130: 75–81. doi: 10.1016/s0166-6851(03)00161-0
[23]  Rahlfs S, Becker K (2001) Thioredoxin peroxidases of the malarial parasite Plasmodium falciparum. Eur J Biochem 268: 1404–1409. doi: 10.1046/j.1432-1327.2001.02005.x
[24]  Sztajer H, Gamain B, Aumann KD, Slomianny C, Becker K, et al. (2001) The putative glutathione peroxidase gene of Plasmodium falciparum codes for a thioredoxin peroxidase. J Biol Chem 276: 7397–7403. doi: 10.1074/jbc.m008631200
[25]  Richard D, Bartfai R, Volz J, Ralph SA, Muller S, et al. (2011) A genome-wide chromatin-associated nuclear peroxiredoxin from the malaria parasite Plasmodium falciparum. J Biol Chem 286: 11746–11755. doi: 10.1074/jbc.m110.198499
[26]  Kehr S, Sturm N, Rahlfs S, Przyborski JM, Becker K (2010) Compartmentation of redox metabolism in malaria parasites. PLoS Pathog 6: e1001242. doi: 10.1371/journal.ppat.1001242
[27]  Chaudhari R, Narayan A, Patankar S (2012) A novel trafficking pathway in Plasmodium falciparum for the organellar localization of glutathione peroxidase-like thioredoxin peroxidase. FEBS J 279: 3872–88. doi: 10.1111/j.1742-4658.2012.08746.x
[28]  Kawazu S, Takemae H, Komaki-Yasuda K, Kano S (2010) Target proteins of the cytosolic thioredoxin in Plasmodium falciparum. Parasitol Int 59: 298–302. doi: 10.1016/j.parint.2010.03.005
[29]  Yano K, Komaki-Yasuda K, Kobayashi T, Takemae H, Kita K, et al. (2005) Expression of mRNAs and proteins for peroxiredoxins in Plasmodium falciparum erythrocytic stage. Parasitol Int 54: 35–41. doi: 10.1016/j.parint.2004.08.005
[30]  Komaki-Yasuda K, Kawazu S, Kano S (2003) Disruption of the Plasmodium falciparum 2-Cys peroxiredoxin gene renders parasites hypersensitive to reactive oxygen and nitrogen species. FEBS Lett 547: 140–144. doi: 10.1016/s0014-5793(03)00694-x
[31]  Yano K, Komaki-Yasuda K, Tsuboi T, Torii M, Kano S, et al. (2006) 2-Cys Peroxiredoxin TPx-1 is involved in gametocyte development in Plasmodium berghei. Mol Biochem Parasitol 148: 44–51. doi: 10.1016/j.molbiopara.2006.02.018
[32]  Yano K, Otsuki H, Arai M, Komaki-Yasuda K, Tsuboi T, et al. (2008) Disruption of the Plasmodium berghei 2-Cys peroxiredoxin TPx-1 gene hinders the sporozoite development in the vector mosquito. Mol Biochem Parasitol 159: 142–145. doi: 10.1016/j.molbiopara.2008.03.002
[33]  Kawazu S, Ikenoue N, Takemae H, Komaki-Yasuda K, Kano S (2005) Roles of 1-Cys peroxiredoxin in haem detoxification in the human malaria parasite Plasmodium falciparum. Febs J 272: 1784–1791. doi: 10.1111/j.1742-4658.2005.04611.x
[34]  Thompson J, van Spaendonk RM, Choudhuri R, Sinden RE, Janse CJ, et al. (1999) Heterogeneous ribosome populations are present in Plasmodium berghei during development in its vector. Mol Microbiol 31: 253–260. doi: 10.1046/j.1365-2958.1999.01167.x
[35]  Kawazu S, Nozaki T, Tsuboi T, Nakano Y, Komaki-Yasuda K, et al. (2003) Expression profiles of peroxiredoxin proteins of the rodent malaria parasite Plasmodium yoelii. Int J Parasitol 33: 1455–1461. doi: 10.1016/s0020-7519(03)00184-x
[36]  Lanz-Mendoza H, Hernandez-Martinez S, Ku-Lopez M, Rodriguez Mdel C, Herrera-Ortiz A, et al. (2002) Superoxide anion in Anopheles albimanus hemolymph and midgut is toxic to Plasmodium berghei ookinetes. J Parasitol 88: 702–706. doi: 10.1645/0022-3395(2002)088[0702:saiaah]2.0.co;2
[37]  Peterson TM, Gow AJ, Luckhart S (2007) Nitric oxide metabolites induced in Anopheles stephensi control malaria parasite infection. Free Radic Biol Med 42: 132–142. doi: 10.1016/j.freeradbiomed.2006.10.037
[38]  Marva E, Chevion M, Golenser J (1991) The effect of free radicals induced by paraquat and copper on the in vitro development of Plasmodium falciparum. Free Radic Res Commun 12–13 Pt 1: 137–146. doi: 10.3109/10715769109145778
[39]  Krall J, Bagley AC, Mullenbach GT, Hallewell RA, Lynch RE (1988) Superoxide mediates the toxicity of paraquat for cultured mammalian cells. J Biol Chem 263: 1910–1914.
[40]  Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, et al. (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11: 4241–4257. doi: 10.1091/mbc.11.12.4241
[41]  Akide-Ndunge OB, Tambini E, Giribaldi G, McMillan PJ, Muller S, et al. (2009) Co-ordinated stage-dependent enhancement of Plasmodium falciparum antioxidant enzymes and heat shock protein expression in parasites growing in oxidatively stressed or G6PD-deficient red blood cells. Malar J 8: 113. doi: 10.1186/1475-2875-8-113
[42]  Oliveira JH, Goncalves RL, Lara FA, Dias FA, Gandara AC, et al. (2011) Blood meal-derived heme decreases ROS levels in the midgut of Aedes aegypti and allows proliferation of intestinal microbiota. PLoS Pathog 7: e1001320. doi: 10.1371/journal.ppat.1001320
[43]  Mair GR, Braks JA, Garver LS, Wiegant JC, Hall N, et al. (2006) Regulation of sexual development of Plasmodium by translational repression. Science 313: 667–669. doi: 10.1126/science.1125129
[44]  Mair GR, Lasonder E, Garver LS, Franke-Fayard BM, Carret CK, et al. (2010) Universal features of post-transcriptional gene regulation are critical for Plasmodium zygote development. PLoS Pathog 6: e1000767. doi: 10.1371/journal.ppat.1000767
[45]  Hall N, Karras M, Raine JD, Carlton JM, Kooij TW, et al. (2005) A comprehensive survey of the Plasmodium life cycle by genomic, transcriptomic, and proteomic analyses. Science 307: 82–86. doi: 10.1126/science.1103717
[46]  Patra KP, Johnson JR, Cantin GT, Yates JR 3rd, Vinetz JM (2008) Proteomic analysis of zygote and ookinete stages of the avian malaria parasite Plasmodium gallinaceum delineates the homologous proteomes of the lethal human malaria parasite Plasmodium falciparum. Proteomics 8: 2492–2499. doi: 10.1002/pmic.200700727
[47]  Rahlfs S, Nickel C, Deponte M, Schirmer RH, Becker K (2003) Plasmodium falciparum thioredoxins and glutaredoxins as central players in redox metabolism. Redox Rep 8: 246–250. doi: 10.1179/135100003225002844
[48]  Bozdech Z, Ginsburg H (2004) Antioxidant defense in Plasmodium falciparum–data mining of the transcriptome. Malar J 3: 23.
[49]  Krnajski Z, Walter RD, Muller S (2001) Isolation and functional analysis of two thioredoxin peroxidases (peroxiredoxins) from Plasmodium falciparum. Mol Biochem Parasitol 113: 303–308. doi: 10.1016/s0166-6851(01)00219-5
[50]  Masuda-Suganuma H, Usui M, Fukumoto S, Inoue N, Kawazu S (2012) Mitochondrial peroxidase TPx-2 is not essential in the blood and insect stages of Plasmodium berghei. Parasit Vectors 5: 252. doi: 10.1186/1756-3305-5-252
[51]  Ma LH, Takanishi CL, Wood MJ (2007) Molecular mechanism of oxidative stress perception by the Orp1 protein. J Biol Chem 282: 31429–31436. doi: 10.1074/jbc.m705953200
[52]  Maiorino M, Ursini F, Bosello V, Toppo S, Tosatto SC, et al. (2007) The thioredoxin specificity of Drosophila GPx: a paradigm for a peroxiredoxin-like mechanism of many glutathione peroxidases. J Mol Biol 365: 1033–1046. doi: 10.1016/j.jmb.2006.10.033
[53]  Rhee SG, Woo HA, Kil IS, Bae SH (2012) Peroxiredoxin functions as a peroxidase and a regulator and sensor of local peroxides. J Biol Chem 287: 4403–4410. doi: 10.1074/jbc.r111.283432
[54]  Angrisano F, Tan YH, Sturm A, McFadden GI, Baum J (2012) Malaria parasite colonisation of the mosquito midgut–placing the Plasmodium ookinete centre stage. Int J Parasitol 42: 519–527. doi: 10.1016/j.ijpara.2012.02.004
[55]  Rodriguez MC, Margos G, Compton H, Ku M, Lanz H, et al. (2002) Plasmodium berghei: routine production of pure gametocytes, extracellular gametes, zygotes, and ookinetes. Exp Parasitol 101: 73–76. doi: 10.1016/s0014-4894(02)00035-8
[56]  Benso A, Di Carlo S, Politano G, Savino A, Hafeezurrehman H (2011) Building gene expression profile classifiers with a simple and efficient rejection option in R. BMC Bioinformatics 12 Suppl 13: S3. doi: 10.1186/1471-2105-12-s13-s3
[57]  Becker K, Muller S, Keese MA, Walter RD, Schirmer RH (1996) A glutathione reductase-like flavoenzyme of the malaria parasite Plasmodium falciparum: structural considerations based on the DNA sequence. Biochem Soc Trans 24: 67–72.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133