All Title Author
Keywords Abstract


DDX24 Negatively Regulates Cytosolic RNA-Mediated Innate Immune Signaling

DOI: 10.1371/journal.ppat.1003721

Full-Text   Cite this paper   Add to My Lib

Abstract:

RIG-I-Like Receptors (RLRs) sense cytosolic viral RNA to transiently activate type I IFN production. Here, we report that a type I IFN inducible DExD/H helicase, DDX24, exerts a negative-regulatory effect on RLR function. Expression of DDX24 specifically suppressed RLR activity, while DDX24 loss, which caused embryonic lethality, augmented cytosolic RNA-mediated innate signaling and facilitated RNA virus replication. DDX24 preferentially bound to RNA rather than DNA species and influenced signaling by associating with adaptor proteins FADD and RIP1. These events preferentially impeded IRF7 activity, an essential transcription factor for type I IFN production. Our data provide a new function for DDX24 and help explain innate immune gene regulation, mechanisms that may additionally provide insight into the causes of inflammatory disease.

References

[1]  Pestka S, Krause CD, Walter MR (2004) Interferons, interferon-like cytokines, and their receptors. Immunol Rev 202: 8–32. doi: 10.1111/j.0105-2896.2004.00204.x
[2]  Honda K, Yanai H, Takaoka A, Taniguchi T (2005) Regulation of the type I IFN induction: A current view. Int Immunol 17: 1367–1378. doi: 10.1093/intimm/dxh318
[3]  Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124: 783–801. doi: 10.1016/j.cell.2006.02.015
[4]  Kawai T, Akira S (2006) Innate immune recognition of viral infection. Nat Immunol 7: 131–136. doi: 10.1038/ni1303
[5]  Yoneyama M, Kikuchi M, Natsukawa T, Shinobu N, Imaizumi T, et al. (2004) The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol 5: 730–737. doi: 10.1038/ni1087
[6]  Barber GN (2011) Cytoplasmic DNA innate immune pathways. Immunol Rev 243 (1) 99–108. doi: 10.1111/j.1600-065x.2011.01051.x
[7]  Hornung V, Ellegast J, Kim S, Brzózka K, Jung A, et al. (2006) 5′-Triphosphate RNA is the ligand for RIG-I. Science 314: 994–997. doi: 10.1126/science.1132505
[8]  Pichlmair A, Schulz O, Tan CP, N?slund TI, Liljestr?m P, et al. (2006) RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science 314: 997–1001. doi: 10.1126/science.1132998
[9]  Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, et al. (2006) Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441: 101–105. doi: 10.1038/nature04734
[10]  Venkataraman T, Valdes M, Elsby R, Kakuta S, Caceres G, et al. (2006) Loss of DExD/H box RNA helicase LGP2 manifests disparate antiviral responses. J Immunol 178 (10) 6444–55. doi: 10.4049/jimmunol.178.10.6444
[11]  Satoh T, Kato H, Kumagai Y, Yoneyama M, Sato S, et al. (2010) LGP2 is a positive regulator of RIG-I- and MDA5-mediated antiviral responses. Proc Natl Acad Sci U S A 107 (4) 1512–7. doi: 10.1073/pnas.0912986107
[12]  Fernandes-Alnemri T, Yu JW, Datta P, Wu J, Alnemri ES (2009) AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 458: 509–13. doi: 10.1038/nature07710
[13]  Alnemri ES (2010) Sensing cytoplasmic danger signals by the inflammasome. J Clin Immunol 30 (4) 512–9. doi: 10.1007/s10875-010-9419-0
[14]  Ishikawa H, Barber GN (2008) STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 455: 674–678. doi: 10.1038/nature07317
[15]  Ishikawa H, Ma Z, Barber GN (2009) STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 461: 788–792. doi: 10.1038/nature08476
[16]  Zhong B, Yang Y, Li S, Wang YY, Li Y, et al. (2008) The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. Immunity 29 (4) 538–50. doi: 10.1016/j.immuni.2008.09.003
[17]  Jin L, Waterman PM, Jonscher KR, Short CM, Reisdorph NA, et al. (2008) MPYS, a novel membrane tetraspanner, is associated with major histocompatibility complex class II and mediates transduction of apoptotic signals. Mol Cell Biol 28 (16) 5014–26. doi: 10.1128/mcb.00640-08
[18]  Davis BK, Wen H, Ting JP (2011) The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu Rev Immunol 29: 707–35. doi: 10.1146/annurev-immunol-031210-101405
[19]  Kawai T, Takahashi K, Sato S, Coban C, Kumar H, et al. (2005) IPS-1, an adaptor triggering RIG-I and Mda5 mediated type I interferon induction. Nat Immunol 6: 981–988. doi: 10.1038/ni1243
[20]  Meylan E, Curran J, Hofmann K, Moradpour D, Binder M, et al. (2005) Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437: 1167–1172. doi: 10.1038/nature04193
[21]  Seth RB, Sun L, Ea CK, Chen ZJ (2005) Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF3. Cell 122: 669–682. doi: 10.1016/j.cell.2005.08.012
[22]  Xu LG, Wang YY, Han KJ, Li LY, Zhai Z, et al. (2005) VISA is an adapter protein required for virus-triggered IFN-beta signaling. Mol Cell 19: 727–740. doi: 10.1016/j.molcel.2005.08.014
[23]  Dixit E, Boulant S, Zhang Y, Lee AS, Odendall C, et al. (2010) Peroxisomes are signaling platforms for antiviral innate immunity. Cell 141: 668–81. doi: 10.1016/j.cell.2010.04.018
[24]  Horner SM, Liu HM, Park HS, Briley J, Gale M Jr (2011) Mitochondrial-associated endoplasmic reticulum membranes (MAM) form innate immune synapses and are targeted by hepatitis C virus. Proc Natl Acad Sci U S A 108: 14590–5. doi: 10.1073/pnas.1110133108
[25]  Fitzgerald KA, McWhirter SM, Faia KL, Rowe DC, Latz E, et al. (2003) IKK epsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol 4: 491–496. doi: 10.1038/ni921
[26]  Sharma S, tenOever BR, Grandvaux N, Zhou GP, Lin R, et al. (2003) Triggering the interferon antiviral response through an IKK-related pathway. Science 300: 1148–1151. doi: 10.1126/science.1081315
[27]  Chinnaiyan AM, Tepper CG, Seldin MF, O'Rourke K, Kischkel FC, et al. (1996) FADD/MORT1 is a common mediator of CD95 (Fas/APO-1) and tumor necrosis factor receptor-induced apoptosis. J Biol Chem 271: 4961–4965. doi: 10.1074/jbc.271.9.4961
[28]  Balachandran S, Thomas E, Barber GN (2004) A FADD-dependent innate immune mechanism in mammalian cells. Nature 432: 401–405. doi: 10.1038/nature03124
[29]  Michallet MC, Meylan E, Ermolaeva MA, Vazquez J, Rebsamen M, et al. (2008) TRADD protein is an essential component of the RIG-like helicase antiviral pathway. Immunity 28 (5) 651–61. doi: 10.1016/j.immuni.2008.03.013
[30]  Balachandran S, Venkataraman T, Fisher PB, Barber GN (2007) Fas-associated death domain-containing protein-mediated antiviral innate immune signaling involves the regulation of Irf7. J Immunol 178 (4) 2429–39. doi: 10.4049/jimmunol.178.4.2429
[31]  Huye LE, Ning S, Kelliher M, Pagano JS (2007) Interferon regulatory factor 7 is activated by a viral oncoprotein through RIP-dependent ubiquitination. Mol Cell Biol 27 (8) 2910–8. doi: 10.1128/mcb.02256-06
[32]  Ulrich S, Uwe W, Maciej L, Christian H, Felix H, et al. (2005) A Human Protein-Protein Interaction Network: A Resource for Annotating the Proteome. Cell 122 (6) 957–68. doi: 10.1016/j.cell.2005.08.029
[33]  Zhao Y, Yu L, Fu Q, Chen W, Jiang J, et al. (2000) Cloning and characterization of human DDX24 and mouse Ddx24, two novel putative DEAD-Box proteins, and mapping DDX24 to human chromosome 14q32. Genomics 67 (3) 351–5. doi: 10.1006/geno.2000.6255
[34]  Faria PA, Chakraborty P, Levay A, Barber GN, Ezelle HJ, et al. (2005) VSV disrupts the Rae1/mrnp41 mRNA nuclear export pathway. Mol Cell 17 (1) 93–102. doi: 10.1016/j.molcel.2004.11.023
[35]  Honda K, Yanai H, Negishi H, Asagiri M, Sato M, et al. (2005) IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature 434: 772–7. doi: 10.1038/nature03464
[36]  Kawai T, Sato S, Ishii KJ, Coban C, Hemmi H, et al. (2004) Interferon-alpha induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6. Nat Immunol 5 (10) 1061–8. doi: 10.1038/ni1118
[37]  Cordin O, Banroques J, Tanner NK, Linder P (2006) The DEAD-box protein family of RNA helicases. Gene 367: 17–37. doi: 10.1016/j.gene.2005.10.019
[38]  Zhang Z, Yuan B, Lu N, Facchinetti V, Liu YJ (2011) DHX9 pairs with IPS-1 to sense double-stranded RNA in myeloid dendritic cells. J Immunol 187 (9) 4501–8. doi: 10.4049/jimmunol.1101307
[39]  Miyashita M, Oshiumi H, Matsumoto M, Seya T (2011) DDX60, a DEXD/H box helicase, is a novel antiviral factor promoting RIG-I-like receptor-mediated signaling. Mol Cell Biol 31: 3802–19. doi: 10.1128/mcb.01368-10
[40]  Oshiumi H, Sakai K, Matsumoto M, Seya T (2010) DEAD/H BOX 3 (DDX3) helicase binds the RIG-I adaptor IPS-1 to up-regulate IFN-beta-inducing potential. Eur J Immunol 40 (4) 940–8. doi: 10.1002/eji.200940203
[41]  Zhang Z, Kim T, Bao M, Facchinetti V, Jung SY, et al. (2011) DDX1, DDX21, and DHX36 helicases form a complex with the adaptor molecule TRIF to sense dsRNA in dendritic cells. Immunity 34 (6) 866–78. doi: 10.1016/j.immuni.2011.03.027
[42]  Kim T, Pazhoor S, Bao M, Zhang Z, Hanabuchi S, et al. (2010) Aspartate-glutamate-alanine- histidine box motif (DEAH)/RNA helicase A helicases sense microbial DNA in human plasmacytoid dendritic cells. Proc Natl Acad Sci U S A 107 (34) 15181–6. doi: 10.1073/pnas.1006539107
[43]  Zhang Z, Yuan B, Bao M, Lu N, Kim T, et al. (2011) The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells. Nat Immunol 12 (10) 959–65. doi: 10.1038/ni.2091
[44]  Soulat D, Bürckstümmer T, Westermayer S, Goncalves A, Bauch A, et al. (2008) The DEAD-box helicase DDX3X is a critical component of the TANK-binding kinase 1-dependent innate immune response. EMBO J 27: 2135–46. doi: 10.1038/emboj.2008.126
[45]  Schr?der M, Baran M, Bowie AG (2008) Viral targeting of DEAD box protein 3 reveals its role in TBK1/IKKepsilon-mediated IRF activation. EMBO J 27: 2147–57. doi: 10.1038/emboj.2008.143
[46]  Gitlin L, Barchet W, Gilfillan S, Cella M, Beutler B, et al. (2006) Essential role of mda-5 in type I IFN responses to polyriboinosinic:polyribocytidylic acid and encephalomyocarditis picornavirus. Proc Natl Acad Sci U S A 103 (22) 8459–64. doi: 10.1073/pnas.0603082103
[47]  Yeh WC, Pompa JL, McCurrach ME, Shu HB, Elia AJ, et al. (1998) FADD: essential for embryo development and signaling from some, but not all, inducers of apoptosis. Science 279: 1954–8. doi: 10.1126/science.279.5358.1954
[48]  Ahn J, Gutman D, Saijo S, Barber GN (2012) STING manifests self DNA-dependent inflammatory disease. Proc Natl Acad Sci U S A 109: 19386–91. doi: 10.1073/pnas.1215006109
[49]  Gall A, Treuting P, Elkon KB, Loo YM, Gale M Jr, et al. (2012) Autoimmunity initiates in nonhematopoietic cells and progresses via lymphocytes in an interferon-dependent autoimmune disease. Immunity 36: 120–31. doi: 10.1016/j.immuni.2011.11.018

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

微信:OALib Journal