[1] | Hille B (2001) Ion channels of excitable membranes, third edition. Sunderland, MA: Sinauer Associates Inc.
|
[2] | Karlin A (2002) Emerging structure of the nicotinic acetylcholine receptors. Nat Rev Neurosci 3: 102–114. doi: 10.1038/nrn731
|
[3] | Lester HA, Dibas MI, Dahan DS, Leite JF, Dougherty DA (2004) Cys-loop receptors: new twists and turns. Trends Neurosci 27: 329–336. doi: 10.1016/j.tins.2004.04.002
|
[4] | Sine SM, Engel AG (2006) Recent advances in Cys-loop receptor structure and function. Nature 440: 448–455. doi: 10.1038/nature04708
|
[5] | Sivilotti LG (2010) What single-channel analysis tells us of the activation mechanism of ligand-gated channels: the case of the glycine receptor. J Physiol 588: 45–58. doi: 10.1113/jphysiol.2009.178525
|
[6] | Miller PS, Smart TG (2010) Binding, activation and modulation of Cys-loop receptors. Trends Pharmacol Sci 31: 161–174. doi: 10.1016/j.tips.2009.12.005
|
[7] | Thompson AJ, Lester HA, Lummis SC (2010) The structural basis of function in Cys-loop receptors. Q Rev Biophys 43: 449–499. doi: 10.1017/s0033583510000168
|
[8] | Yakel JL (2010) Gating of nicotinic ACh receptors: latest insights into ligand binding and function. J Physiol 588: 597–602. doi: 10.1113/jphysiol.2009.182691
|
[9] | Unwin N (2005) Refined structure of the nicotinic acetylcholine receptor at 4A resolution. J Mol Biol 346: 967–989. doi: 10.1016/j.jmb.2004.12.031
|
[10] | Hilf RJ, Dutzler R (2009) A prokaryotic perspective on pentameric ligand-gated ion channel structure. Curr Opin Struct Biol 19: 418–424. doi: 10.1016/j.sbi.2009.07.006
|
[11] | Celie PH, van Rossum-Fikkert SE, van Dijk WJ, Brejc K, Smit AB, et al. (2004) Nicotine and carbamylcholine binding to nicotinic acetylcholine receptors as studied in AChBP crystal structures. Neuron 41: 907–914. doi: 10.1016/s0896-6273(04)00115-1
|
[12] | Sabey K, Paradiso K, Zhang J, Steinbach JH (1999) Ligand binding and activation of rat nicotinic alpha4beta2 receptors stably expressed in HEK293 cells. Mol Pharmacol 55: 58–66.
|
[13] | Burzomato V, Beato M, Groot-Kormelink PJ, Colquhoun D, Sivilotti LG (2004) Single-channel behavior of heteromeric alpha1beta glycine receptors: an attempt to detect a conformational change before the channel opens. J Neurosci 24: 10924–10940. doi: 10.1523/jneurosci.3424-04.2004
|
[14] | Lester HA, Changeux JP, Sheridan RE (1975) Conductance increases produced by bath application of cholinergic agonists to Electrophorus electroplaques. J Gen Physiol 65: 797–816. doi: 10.1085/jgp.65.6.797
|
[15] | Rayes D, De Rosa MJ, Sine SM, Bouzat C (2009) Number and locations of agonist binding sites required to activate homomeric Cys-loop receptors. J Neurosci 29: 6022–6032. doi: 10.1523/jneurosci.0627-09.2009
|
[16] | Beato M, Groot-Kormelink PJ, Colquhoun D, Sivilotti LG (2004) The activation mechanism of alpha1 homomeric glycine receptors. J Neurosci 24: 895–906. doi: 10.1523/jneurosci.4420-03.2004
|
[17] | Grosman C, Zhou M, Auerbach A (2000) Mapping the conformational wave of acetylcholine receptor channel gating. Nature 403: 773–776. doi: 10.1038/35001586
|
[18] | Taly A, Corringer PJ, Guedin D, Lestage P, Changeux JP (2009) Nicotinic receptors: allosteric transitions and therapeutic targets in the nervous system. Nat Rev Drug Discov 8: 733–750. doi: 10.1038/nrd2927
|
[19] | Mohler H (2011) The rise of a new GABA pharmacology. Neuropharmacology 60: 1042–1049. doi: 10.1016/j.neuropharm.2010.10.020
|
[20] | Yamakura T, Bertaccini E, Trudell JR, Harris RA (2001) Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol 41: 23–51. doi: 10.1146/annurev.pharmtox.41.1.23
|
[21] | Lobo IA, Harris RA (2008) GABA(A) receptors and alcohol. Pharmacol Biochem Behav 90: 90–94. doi: 10.1016/j.pbb.2008.03.006
|
[22] | Hibbs RE, Gouaux E (2011) Principles of activation and permeation in an anion-selective Cys-loop receptor. Nature 474: 54–60. doi: 10.1038/nature10139
|
[23] | Dani JA, Eisenman G (1987) Monovalent and divalent cation permeation in acetylcholine receptor channels. Ion transport related to structure. J Gen Physiol 89: 959–983. doi: 10.1085/jgp.89.6.959
|
[24] | Adams DJ, Dwyer TM, Hille B (1980) The permeability of endplate channels to monovalent and divalent metal cations. J Gen Physiol 75: 493–510. doi: 10.1085/jgp.75.5.493
|
[25] | Sine SM, Claudio T, Sigworth FJ (1990) Activation of Torpedo acetylcholine receptors expressed in mouse fibroblasts. Single channel current kinetics reveal distinct agonist binding affinities. J Gen Physiol 96: 395–437. doi: 10.1085/jgp.96.2.395
|
[26] | Mulle C, Lena C, Changeux JP (1992) Potentiation of nicotinic receptor response by external calcium in rat central neurons. Neuron 8: 937–945. doi: 10.1016/0896-6273(92)90208-u
|
[27] | Vernino S, Amador M, Luetje CW, Patrick J, Dani JA (1992) Calcium modulation and high calcium permeability of neuronal nicotinic acetylcholine receptors. Neuron 8: 127–134. doi: 10.1016/0896-6273(92)90114-s
|
[28] | Peters JA, Hales TG, Lambert JJ (1988) Divalent cations modulate 5-HT3 receptor-induced currents in N1E-115 neuroblastoma cells. Eur J Pharmacol 151: 491–495. doi: 10.1016/0014-2999(88)90550-x
|
[29] | Niemeyer MI, Lummis SC (2001) The role of the agonist binding site in Ca(2+) inhibition of the recombinant 5-HT(3A) receptor. Eur J Pharmacol 428: 153–161. doi: 10.1016/s0014-2999(01)01251-1
|
[30] | Palma E, Maggi L, Miledi R, Eusebi F (1998) Effects of Zn2+ on wild and mutant neuronal alpha7 nicotinic receptors. Proc Natl Acad Sci U S A 95: 10246–10250. doi: 10.1073/pnas.95.17.10246
|
[31] | Smart TG, Xie X, Krishek BJ (1994) Modulation of inhibitory and excitatory amino acid receptor ion channels by zinc. Prog Neurobiol 42: 393–441. doi: 10.1016/0301-0082(94)90082-5
|
[32] | Laube B, Kuhse J, Rundstrom N, Kirsch J, Schmieden V, et al. (1995) Modulation by zinc ions of native rat and recombinant human inhibitory glycine receptors. J Physiol 483 (Pt 3) 613–619.
|
[33] | Hubbard PC, Lummis SC (2000) Zn(2+) enhancement of the recombinant 5-HT(3) receptor is modulated by divalent cations. Eur J Pharmacol 394: 189–197. doi: 10.1016/s0014-2999(00)00143-6
|
[34] | Hsiao B, Mihalak KB, Magleby KL, Luetje CW (2008) Zinc potentiates neuronal nicotinic receptors by increasing burst duration. J Neurophysiol 99: 999–1007. doi: 10.1152/jn.01040.2007
|
[35] | Moroni M, Vijayan R, Carbone A, Zwart R, Biggin PC, et al. (2008) Non-agonist-binding subunit interfaces confer distinct functional signatures to the alternate stoichiometries of the alpha4beta2 nicotinic receptor: an alpha4-alpha4 interface is required for Zn2+ potentiation. J Neurosci 28: 6884–6894. doi: 10.1523/jneurosci.1228-08.2008
|
[36] | Hilf RJ, Dutzler R (2008) X-ray structure of a prokaryotic pentameric ligand-gated ion channel. Nature 452: 375–379. doi: 10.1038/nature06717
|
[37] | Zimmermann I, Dutzler R (2011) Ligand activation of the prokaryotic pentameric ligand-gated ion channel ELIC. PLoS Biol 9: e1001101 doi:10.1371/journal.pbio.1001101.
|
[38] | Hilf RJ, Bertozzi C, Zimmermann I, Reiter A, Trauner D, et al. (2010) Structural basis of open channel block in a prokaryotic pentameric ligand-gated ion channel. Nat Struct Mol Biol 17: 1330–1336. doi: 10.1038/nsmb.1933
|
[39] | Hilf RJ, Dutzler R (2009) Structure of a potentially open state of a proton-activated pentameric ligand-gated ion channel. Nature 457: 115–118. doi: 10.1038/nature07461
|
[40] | Bocquet N, Nury H, Baaden M, Le Poupon C, Changeux JP, et al. (2009) X-ray structure of a pentameric ligand-gated ion channel in an apparently open conformation. Nature 457: 111–114. doi: 10.1038/nature07462
|
[41] | Pan J, Chen Q, Willenbring D, Yoshida K, Tillman T, et al. (2012) Structure of the pentameric ligand-gated ion channel ELIC cocrystallized with its competitive antagonist acetylcholine. Nat Commun 3: 714. doi: 10.1038/ncomms1703
|
[42] | Arunlakshana O, Schild HO (1959) Some quantitative uses of drug antagonists. Br J Pharmacol 14: 48–58. doi: 10.1111/j.1476-5381.1959.tb00928.x
|
[43] | Colquhoun D (2007) Why the Schild method is better than Schild realised. Trends Pharmacol Sci 28: 608–614. doi: 10.1016/j.tips.2007.09.011
|
[44] | Yuan P, Leonetti MD, Hsiung Y, MacKinnon R (2012) Open structure of the Ca2+ gating ring in the high-conductance Ca2+-activated K+ channel. Nature 481: 94–97. doi: 10.1038/nature10670
|
[45] | Wu Y, Yang Y, Ye S, Jiang Y (2010) Structure of the gating ring from the human large-conductance Ca(2+)-gated K(+) channel. Nature 466: 393–397. doi: 10.1038/nature09252
|
[46] | Schumacher MA, Rivard AF, Bachinger HP, Adelman JP (2001) Structure of the gating domain of a Ca2+-activated K+ channel complexed with Ca2+/calmodulin. Nature 410: 1120–1124. doi: 10.1038/35074145
|
[47] | Auld DS (2009) The ins and outs of biological zinc sites. Biometals 22: 141–148. doi: 10.1007/s10534-008-9184-1
|
[48] | Vallee BL, Auld DS (1990) Zinc coordination, function, and structure of zinc enzymes and other proteins. Biochemistry 29: 5647–5659. doi: 10.1021/bi00476a001
|
[49] | Lu M, Chai J, Fu D (2009) Structural basis for autoregulation of the zinc transporter YiiP. Nat Struct Mol Biol 16: 1063–1067. doi: 10.1038/nsmb.1662
|
[50] | Galzi JL, Bertrand S, Corringer PJ, Changeux JP, Bertrand D (1996) Identification of calcium binding sites that regulate potentiation of a neuronal nicotinic acetylcholine receptor. The EMBO J 15: 5824–5832.
|
[51] | Eddins D, Sproul AD, Lyford LK, McLaughlin JT, Rosenberg RL (2002) Glutamate 172, essential for modulation of L247T alpha7 ACh receptors by Ca2+, lines the extracellular vestibule. Am J Physiol Cell Physiol 283: C1454–C1460. doi: 10.1152/ajpcell.00204.2002
|
[52] | Lyford LK, Sproul AD, Eddins D, McLaughlin JT, Rosenberg RL (2003) Agonist-induced conformational changes in the extracellular domain of alpha 7 nicotinic acetylcholine receptors. Mol Pharmacol 64: 650–658. doi: 10.1124/mol.64.3.650
|
[53] | Hosie AM, Dunne EL, Harvey RJ, Smart TG (2003) Zinc-mediated inhibition of GABA(A) receptors: discrete binding sites underlie subtype specificity. Nat Neurosci 6: 362–369. doi: 10.1038/nn1030
|
[54] | Thompson AJ, Lummis SC (2009) Calcium modulation of 5-HT3 receptor binding and function. Neuropharmacology 56: 285–291. doi: 10.1016/j.neuropharm.2008.07.009
|
[55] | Hu XQ, Lovinger DM (2005) Role of aspartate 298 in mouse 5-HT3A receptor gating and modulation by extracellular Ca2+. J Physiol 568: 381–396. doi: 10.1113/jphysiol.2005.092866
|
[56] | Colquhoun D (1998) Binding, gating, affinity and efficacy: the interpretation of structure-activity relationships for agonists and of the effects of mutating receptors. Br J Pharmacol 125: 924–947. doi: 10.1038/sj.bjp.0702164
|
[57] | Auerbach A (2005) Gating of acetylcholine receptor channels: brownian motion across a broad transition state. Proc Natl Acad Sci U S A 102: 1408–1412. doi: 10.1073/pnas.0406787102
|
[58] | Mukhtasimova N, Lee WY, Wang HL, Sine SM (2009) Detection and trapping of intermediate states priming nicotinic receptor channel opening. Nature 459: 451–454. doi: 10.1038/nature07923
|
[59] | Auerbach A (1992) Kinetic behavior of cloned mouse acetylcholine receptors. A semi-autonomous, stepwise model of gating. Biophys J 62: 72–73. doi: 10.1016/s0006-3495(92)81783-6
|
[60] | Auerbach A (1993) A statistical analysis of acetylcholine receptor activation in Xenopus myocytes: stepwise versus concerted models of gating. J Physiol 461: 339–378.
|
[61] | Jadey S, Auerbach A (2012) An integrated catch-and-hold mechanism activates nicotinic acetylcholine receptors. J Gen Physiol 140: 17–28. doi: 10.1085/jgp.201210801
|
[62] | Amador M, Dani JA (1995) Mechanism for modulation of nicotinic acetylcholine receptors that can influence synaptic transmission. J Neurosci 15: 4525–4532.
|
[63] | Kabsch W (1993) Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J Appl Cryst 26: 795–800. doi: 10.1107/s0021889893005588
|
[64] | CCP4 (1994) Collaborative Computational Project Nr. 4. The CCP4 Suite: Programs for X-ray crystallography. Acta Crystallogr D 50: 760–763. doi: 10.1107/s0907444994003112
|
[65] | McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ (2007) Phaser crystallographic software. J Appl Cryst 40: 658–674. doi: 10.1107/s0021889807021206
|
[66] | Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and development of Coot. Acta Crystallogr D Biol Crystallogr 66: 486–501. doi: 10.1107/s0907444910007493
|
[67] | Adams PD, Grosse-Kunstleve RW, Hung LW, Ioerger TR, McCoy AJ, et al. (2002) PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr D Biol Crystallogr 58: 1948–1954. doi: 10.1107/s0907444902016657
|
[68] | Lorenz C, Pusch M, Jentsch TJ (1996) Heteromultimeric CLC chloride channels with novel properties. Proc Natl Acad Sci U S A 93: 13362–13366. doi: 10.1073/pnas.93.23.13362
|
[69] | Groot-Kormelink PJ, Beato M, Finotti C, Harvey RJ, Sivilotti LG (2002) Achieving optimal expression for single channel recording: a plasmid ratio approach to the expression of alpha 1 glycine receptors in HEK293 cells. J Neurosci Methods 113: 207–214. doi: 10.1016/s0165-0270(01)00500-3
|