All Title Author
Keywords Abstract

PLOS Biology  2012 

Regulation of Early Adipose Commitment by Zfp521

DOI: 10.1371/journal.pbio.1001433

Full-Text   Cite this paper   Add to My Lib

Abstract:

While there has been significant progress in determining the transcriptional cascade involved in terminal adipocyte differentiation, less is known about early events leading to lineage commitment and cell fate choice. It has been recently discovered that zinc finger protein 423 (Zfp423) is an early actor in adipose determination. Here, we show that a close paralog of Zfp423, Zfp521, acts as a key regulator of adipose commitment and differentiation in vitro and in vivo. Zfp521 exerts its actions by binding to early B cell factor 1 (Ebf1), a transcription factor required for the generation of adipocyte progenitors, and inhibiting the expression of Zfp423. Overexpression of Zfp521 in cells greatly inhibits adipogenic potential, whereas RNAi-mediated knock-down or genetic ablation of Zfp521 enhances differentiation. In addition, Zfp521?/? embryos exhibit increased mass of interscapular brown adipose tissue and subcutaneous white adipocytes, a cell autonomous effect. Finally, Ebf1 participates in a negative feedback loop to repress Zfp521 as differentiation proceeds. Because Zfp521 is known to promote bone development, our results suggest that it acts as a critical switch in the commitment decision between the adipogenic and osteogenic lineages.

References

[1]  Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, et al. (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284: 143–147. doi: 10.1126/science.284.5411.143
[2]  Nuttall ME, Gimble JM (2004) Controlling the balance between osteoblastogenesis and adipogenesis and the consequent therapeutic implications. Curr Opin Pharmacol 4: 290–294. doi: 10.1016/j.coph.2004.03.002
[3]  Dimitri P, Wales JK, Bishop N (2010) Fat and bone in children: differential effects of obesity on bone size and mass according to fracture history. J Bone Miner Res 25: 527–536. doi: 10.1359/jbmr.090823
[4]  Lazarenko OP, Rzonca SO, Suva LJ, Lecka-Czernik B (2006) Netoglitazone is a PPAR-gamma ligand with selective effects on bone and fat. Bone 38: 74–84. doi: 10.1016/j.bone.2005.07.008
[5]  Lazarenko OP, Rzonca SO, Hogue WR, Swain FL, Suva LJ, et al. (2007) Rosiglitazone induces decreases in bone mass and strength that are reminiscent of aged bone. Endocrinoloy 148: 2669–2680. doi: 10.1210/en.2006-1587
[6]  Schwartz AV, Sellmeyer DE, Strotmeyer ES, Tylavsky FA, Feingold KR, et al. (2005) Diabetes and bone loss at the hip in older black and white adults. J Bone Miner Res 20: 596–603. doi: 10.1359/jbmr.041219
[7]  Khan E, Abu-Amer Y (2003) Activation of peroxisome proliferator-activatedreceptor-gamma inhibits differentiation of preosteoblasts. J Lab Clin Med 142: 29–34. doi: 10.1016/s0022-2143(03)00058-1
[8]  Cheng SL, Shao JS, Charlton-Kachigian N, Loewy AP, Towler DA (2003) MSX2 promotes osteogenesis and suppresses adipogenic differentiation of multipotent mesenchymal progenitors. J Biol Chem 278: 45969–45977. doi: 10.1074/jbc.m306972200
[9]  Ichida F, Nishimura R, Hata K, Matsubara T, Ikeda F, et al. (2004) Reciprocal roles of MSX2 in regulation of osteoblast and adipocyte differentiation. J Biol Chem 279: 34015–34022. doi: 10.1074/jbc.m403621200
[10]  Hong JH, Hwang ES, McManus MT, Amsterdam A, Tian Y, et al. (2005) TAZ, a transcriptional modulator of mesenchymal stem cell differentiation. Science 309: 1074–1078. doi: 10.1126/science.1110955
[11]  Sabatakos G, Sims NA, Chen J, Aoki K, Kelz MB, et al. (2000) Overexpression of DeltaFosB transcription factor(s) increases bone formation and inhibits adipogenesis. Nat Med 6: 985–990.
[12]  Calo E, Quintero-Estades JA, Danielian PS, Nedelcu S, Berman SD, et al. (2010) Rb regulates fate choice and lineage commitment in vivo. Nature 466: 1110–1114. doi: 10.1038/nature09264
[13]  Nishikawa K, Nakashima T, Takeda S, Isogai M, Hamada M, et al. (2010) Maf promotes osteoblast differentiation in mice by mediating the age-related switch in mesenchymal cell differentiation. J Clin Invest 120: 3455–3465. doi: 10.1172/jci42528
[14]  Cristancho AG, Lazar MA (2011) Forming functional fat: a growing understanding of adipocyte differentiation. Nat Rev Mol Cell Biol 11: 722–734. doi: 10.1038/nrm3198
[15]  Gupta RK, Arany Z, Seale P, Mepani RJ, Ye L, et al. (2010) Transcriptional control of preadipocyte determination by Zfp423. Nature 464: 619–623. doi: 10.1038/nature08816
[16]  Gupta RK, Mepani RJ, Kleiner S, Lo JC, Khandekar MJ, et al. (2012) Zfp423 expression identifies committed preadipocytes and localizes to adipose endothelial and perivascular cells. Cell Metab 15: 230–239. doi: 10.1016/j.cmet.2012.01.010
[17]  Cristancho AG, Schupp M, Lefterova MI, Cao S, Cohen DM, et al. (2011) Repressor transcription factor 7-like 1 promotesadipogenic competency in precursor cells. Proc Natl Acad Sci U S A 108: 16271–16276. doi: 10.1073/pnas.1109409108
[18]  Alcaraz WA, Gold DA, Raponi E, Gent PM, Concepcion D, et al. (2006) Zfp423 controls proliferation and differentiation of neural precursors in cerebellar vermis formation. Proc Natl Acad Sci U S A 103: 19424–19429. doi: 10.1073/pnas.0609184103
[19]  Warming S, Rachel RA, Jenkins NA, Copeland NG (2006) Zfp423 is required for normal cerebellar development. Mol Cell Biol 26: 6913–6922. doi: 10.1128/mcb.02255-05
[20]  Huang S, Laoukili J, Epping MT, Koster J, Holzel M, et al. (2009) ZNF423 is critically required for retinoic acid-induced differentiation and is a marker of neuroblastoma outcome. Cancer Cell 15: 328–340. doi: 10.1016/j.ccr.2009.02.023
[21]  Tsai RY, Reed RR (1998) Identification of DNA recognition sequences and protein interaction domains of the multiple-Zn-finger protein Roaz. Mol Cell Biol 18: 6447–6456.
[22]  Hata A, Seoane J, Lagna G, Montalvo E, Hemmati-Brivanlou A, et al. (2000) OAZ uses distinct DNA- and protein-binding zinc fingers inseparate BMP-Smad and Olf signaling pathways. Cell 100: 229–240. doi: 10.1016/s0092-8674(00)81561-5
[23]  Wang MM, Reed RR (1993) Molecular cloning of the olfactory neuronal transcription factor Olf-1 by genetic selection in yeast. Nature 364: 121–126. doi: 10.1038/364121a0
[24]  Hagman J, Belanger C, Travis A, Turck CW, Grosschedl R (1993) Cloning and functional characterization of early B-cell factor, a regulator of lymphocyte-specific gene expression. Genes Dev 7: 760–773. doi: 10.1101/gad.7.5.760
[25]  Jimenez MA, Akerblad P, Sigvardsson M, Rosen ED (2007) Criticalrole for Ebf1 and Ebf2 in the adipogenic transcriptional cascade. Mol Cell Biol 27: 743–757. doi: 10.1128/mcb.01557-06
[26]  Akerblad P, Lind U, Liberg D, Bamberg K, Sigvardsson M (2002) Early B-cellfactor (O/E-1) is a promoter of adipogenesis and involved in control of genesimportant for terminal adipocyte differentiation. Mol Cell Biol 22: 8015–8025. doi: 10.1128/mcb.22.22.8015-8025.2002
[27]  Festa E, Fretz J, Berry R, Schmidt B, Rodeheffer M, et al. (2011) Adipocyte lineage cells contribute to the skin stem cell niche to drive hair cycling. Cell 146: 761–771. doi: 10.1016/j.cell.2011.07.019
[28]  Fretz JA, Nelson T, Xi Y, Adams DJ, Rosen CJ, et al. (2010) Altered metabolism and lipodystrophy in the early B-cell factor 1-deficient mouse. Endocrinology 151: 1611–1621. doi: 10.1210/en.2009-0987
[29]  Bond HM, Mesuraca M, Carbone E, Bonelli P, Agosti V, et al. (2004) Early hematopoietic zinc finger protein (EHZF), the human homolog to mouse Evi3, is highly expressed in primitive human hematopoietic cells. Blood 103: 2062–2070. doi: 10.1182/blood-2003-07-2388
[30]  Ivanova NB, Dimos JT, Schaniel C, Hackney JA, Moore KA, et al. (2002) A stem cell molecular signature. Science 298: 601–604. doi: 10.1126/science.1073823
[31]  Lobo MK, Karsten SL, Gray M, Geschwind DH, Yang XW (2006) FACS-array profiling of striatal projection neuron subtypes in juvenile and adult mouse brains. Nat Neurosci 9: 443–452. doi: 10.1038/nn1654
[32]  Correa D, Hesse E, Seriwatanachai D, Kiviranta R, Saito H, et al. (2010) Zfp521 is a target gene and key effector of parathyroid hormone-related peptide signaling in growth plate chondrocytes. Dev Cell 19: 533–546. doi: 10.1016/j.devcel.2010.09.008
[33]  Wu M, Hesse E, Morvan F, Zhang JP, Correa D, et al. (2009) Zfp521 antagonizes Runx2, delays osteoblast differentiation in vitro, and promotes bone formation in vivo. Bone 44: 528–536. doi: 10.1016/j.bone.2008.11.011
[34]  Milatovich A, Qiu RG, Grosschedl R, Francke U (1994) Gene for a tissue-specific transcriptional activator (EBF or Olf-1), expressed in early B lymphocytes, adipocytes, and olfactory neurons, is located on human chromosome 5, band q34, and proximal mouse chromosome 11. Mamm Genome 5: 211–215. doi: 10.1007/bf00360547
[35]  Hentges KE, Weiser KC, Schountz T, Woodward LS, Morse HC, et al. (2005) Evi3, a zinc-finger protein related to EBFAZ, regulates EBF activity in B-cell leukemia. Oncogene 24: 1220–1230. doi: 10.1038/sj.onc.1208243
[36]  Mega T, Lupia M, Amodio N, Horton SJ, Mesuraca M, et al. (2011) Zinc finger protein 521 antagonizes early B-cell factor 1 and modulatesthe B-lymphoid differentiation of primary hematopoietic progenitors. Cell Cycle 10: 2129–2139. doi: 10.4161/cc.10.13.16045
[37]  Davis JA, Reed RR (1996) Role of Olf-1 and Pax-6 transcription factors in neurodevelopment. J Neurosci 16: 5082–5094.
[38]  Green H, Kehinde O (1979) Formation of normally differentiated subcutaneous fat pads by an established preadipose cell line. J Cell Physiol 101: 169–172. doi: 10.1002/jcp.1041010119
[39]  Mikkelsen TS, Xu Z, Zhang X, Wang L, Gimble JM, et al. (2010) Comparative epigenomic analysis of murine and human adipogenesis. Cell 143: 156–169. doi: 10.1016/j.cell.2010.09.006
[40]  Sakaue H, Ogawa W, Nakamura T, Mori T, Nakamura K, et al. (2004) Role of MAPK phosphatase-1 (MKP-1) in adipocyte differentiation. J Biol Chem 38: 39951–39957. doi: 10.1074/jbc.m407353200
[41]  Rosen ED, Hsu CH, Wang X, Sakai S, Freeman MW, et al. (2002) C/EBPalpha induces adipogenesis through PPARgamma: a unified pathway. Genes Dev 16: 22–26. doi: 10.1101/gad.948702
[42]  Yu G, Floyd ZE, Wu X, Halvorsen YD, Gimble JM (2011) Isolation of human adipose-derived stem cells from lipoaspirates. Methods Mol Biol 702: 17–27. doi: 10.1007/978-1-61737-960-4_2
[43]  Smith EM, Akerblad P, Kadesch T, Axelson H, Sigvardsson M (2005) Inhibition of EBF function by active Notch signaling reveals a novel regulatory pathway in early B-cell development. Blood 106: 1995–2001. doi: 10.1182/blood-2004-12-4744
[44]  Xu Z, Yu S, Hsu CH, Eguchi J, Rosen ED (2008) The orphan nuclear receptor chicken ovalbumin upstream promoter-transcription factor II is a critical regulator of adipogenesis. Proc Natl Acad Sci U S A 105: 2421–2426. doi: 10.1073/pnas.0707082105
[45]  Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25: 402–408. doi: 10.1006/meth.2001.1262

Full-Text

comments powered by Disqus