Centromeres are differentiated chromatin domains, present once per chromosome, that direct segregation of the genome in mitosis and meiosis by specifying assembly of the kinetochore. They are distinct genetic loci in that their identity in most organisms is determined not by the DNA sequences they are associated with, but through specific chromatin composition and context. The core nucleosomal protein CENP-A/cenH3 plays a primary role in centromere determination in all species and directs assembly of a large complex of associated proteins in vertebrates. While CENP-A itself is stably transmitted from one generation to the next, the nature of the template for centromere replication and its relationship to kinetochore function are as yet poorly understood. Here, we investigate the assembly and inheritance of a histone fold complex of the centromere, the CENP-T/W complex, which is integrated with centromeric chromatin in association with canonical histone H3 nucleosomes. We have investigated the cell cycle regulation, timing of assembly, generational persistence, and requirement for function of CENPs -T and -W in the cell cycle in human cells. The CENP-T/W complex assembles through a dynamic exchange mechanism in late S-phase and G2, is required for mitosis in each cell cycle and does not persist across cell generations, properties reciprocal to those measured for CENP-A. We propose that the CENP-A and H3-CENP-T/W nucleosome components of the centromere are specialized for centromeric and kinetochore activities, respectively. Segregation of the assembly mechanisms for the two allows the cell to switch between chromatin configurations that reciprocally support the replication of the centromere and its conversion to a mitotic state on postreplicative chromatin.
References
[1]
Cleveland D. W, Mao Y, Sullivan K. F (2003) Centromeres and kinetochores: from epigenetics to mitotic checkpoint signaling. Cell 112: 407–421.
[2]
Przewloka M. R, Glover D. M (2009) The kinetochore and the centromere: a working long distance relationship. Annu Rev Genet 43: 439–465.
[3]
Santaguida S, Musacchio A (2009) The life and miracles of kinetochores. EMBO J 28: 2511–2531.
[4]
Cheeseman I. M, Desai A (2008) Molecular architecture of the kinetochore-microtubule interface. Nat Rev Mol Cell Biol 9: 33–46.
[5]
Williams B. C, Murphy T. D, Goldberg M. L, Karpen G. H (1998) Neocentromere activity of structurally acentric mini-chromosomes in Drosophila. Nat Genet 18: 30–37.
[6]
Barry A. E, Howman E. V, Cancilla M. R, Saffery R, Choo K. H (1999) Sequence analysis of an 80 kb human neocentromere. Hum Mol Genet 8: 217–227.
[7]
Wade C. M, Giulotto E, Sigurdsson S, Zoli M, Gnerre S, et al. (2009) Genome sequence, comparative analysis, and population genetics of the domestic horse. Science 326: 865–867.
[8]
Piras F. M, Nergadze S. G, Magnani E, Bertoni L, Attolini C, et al. (2010) Uncoupling of satellite DNA and centromeric function in the genus Equus. PLoS Genet 6: e1000845. doi:10.1371/journal.pgen.1000845.
[9]
Palmer D. K, O'Day K, Trong H. L, Charbonneau H, Margolis R. L (1991) Purification of the centromere-specific protein CENP-A and demonstration that it is a distinctive histone. Proc Natl Acad Sci U S A 88: 3734–3738.
[10]
Sullivan K. F, Hechenberger M, Masri K (1994) Human CENP-A contains a histone H3 related histone fold domain that is required for targeting to the centromere. J Cell Biol 127: 581–592.
[11]
Stoler S, Keith K. C, Curnick K. E, Fitzgerald-Hayes M (1995) A mutation in CSE4, an essential gene encoding a novel chromatin-associated protein in yeast, causes chromosome nondisjunction and cell cycle arrest at mitosis. Genes Dev 9: 573–586.
[12]
Allshire R. C, Karpen G. H (2008) Epigenetic regulation of centromeric chromatin: old dogs, new tricks? Nat Rev Genet 9: 923–937.
[13]
Dalal Y, Bui M (2010) Down the rabbit hole of centromere assembly and dynamics. Curr Opin Cell Biol 22: 392–402.
[14]
Black B. E, Cleveland D. W (2011) Epigenetic centromere propagation and the nature of CENP-A nucleosomes. Cell 144: 471–479.
[15]
Camahort R, Shivaraju M, Mattingly M, Li B, Nakanishi S, et al. (2009) Cse4 is part of an octameric nucleosome in budding yeast. Mol Cell 35: 794–805.
[16]
Dalal Y, Wang H, Lindsay S, Henikoff S (2007) Tetrameric structure of centromeric nucleosomes in interphase Drosophila cells. PLoS Biol 5: e218. doi:10.1371/journal.pbio.0050218.
[17]
Mizuguchi G, Xiao H, Wisniewski J, Smith M. M, Wu C (2007) Nonhistone Scm3 and histones CenH3-H4 assemble the core of centromere-specific nucleosomes. Cell 129: 1153–1164.
[18]
Sekulic N, Bassett E. A, Rogers D. J, Black B. E (2010) The structure of (CENP-A-H4)(2) reveals physical features that mark centromeres. Nature 467: 347–351.
[19]
Black B. E, Foltz D. R, Chakravarthy S, Luger K, Woods V. L Jr, et al. (2004) Structural determinants for generating centromeric chromatin. Nature 430: 578–582.
[20]
Furuyama T, Henikoff S (2009) Centromeric nucleosomes induce positive DNA supercoils. Cell 138: 104–113.
[21]
Fujita Y, Hayashi T, Kiyomitsu T, Toyoda Y, Kokubu A, et al. (2007) Priming of centromere for CENP-A recruitment by human hMis18alpha, hMis18beta, and M18BP1. Dev Cell 12: 17–30.
[22]
Jansen L. E, Black B. E, Foltz D. R, Cleveland D. W (2007) Propagation of centromeric chromatin requires exit from mitosis. J Cell Biol 176: 795–805.
[23]
Perpelescu M, Nozaki N, Obuse C, Yang H, Yoda K (2009) Active establishment of centromeric CENP-A chromatin by RSF complex. J Cell Biol 185: 397–407.
[24]
Dunleavy E. M, Roche D, Tagami H, Lacoste N, Ray-Gallet D, et al. (2009) HJURP is a cell-cycle-dependent maintenance and deposition factor of CENP-A at centromeres. Cell 137: 485–497.
[25]
Foltz D. R, Jansen L. E, Bailey A. O, Yates3rd J. R, Bassett E. A, et al. (2009) Centromere-specific assembly of CENP-a nucleosomes is mediated by HJURP. Cell 137: 472–484.
[26]
Lagana A, Dorn J. F, De Rop V, Ladouceur A. M, Maddox A. S, et al. (2010) A small GTPase molecular switch regulates epigenetic centromere maintenance by stabilizing newly incorporated CENP-A. Nat Cell Biol 12: 1186–1193.
[27]
Heun P, Erhardt S, Blower M. D, Weiss S, Skora A. D, et al. (2006) Mislocalization of the Drosophila centromere-specific histone CID promotes formation of functional ectopic kinetochores. Dev Cell 10: 303–315.
[28]
Van Hooser A. A, Ouspenski , Gregson H. C, Starr D. A, Yen T. J, et al. (2001) Specification of kinetochore-forming chromatin by the histone H3 variant CENP-A. J Cell Sci 114: 3529–3542.
[29]
Izuta H, Ikeno M, Suzuki N, Tomonaga T, Nozaki N, et al. (2006) Comprehensive analysis of the ICEN (Interphase Centromere Complex) components enriched in the CENP-A chromatin of human cells. Genes Cells 11: 673–684.
[30]
Foltz D. R, Jansen L. E, Black B. E, Bailey A. O, Yates3rd J. R, et al. (2006) The human CENP-A centromeric nucleosome-associated complex. Nat Cell Biol 8: 458–469.
[31]
Okada M, Cheeseman I. M, Hori T, Okawa K, McLeod I. X, et al. (2006) The CENP-H-I complex is required for the efficient incorporation of newly synthesized CENP-A into centromeres. Nat Cell Biol 8: 446–457.
[32]
Hori T, Amano M, Suzuki A, Backer C. B, Welburn J. P, et al. (2008) CCAN makes multiple contacts with centromeric DNA to provide distinct pathways to the outer kinetochore. Cell 135: 1039–1052.
[33]
Liu S. T, Rattner J. B, Jablonski S. A, Yen T. J (2006) Mapping the assembly pathways that specify formation of the trilaminar kinetochore plates in human cells. J Cell Biol 175: 41–53.
[34]
Okada M, Okawa K, Isobe T, Fukagawa T (2009) CENP-H-containing complex facilitates centromere deposition of CENP-A in cooperation with FACT and CHD1. Mol Biol Cell 20: 3986–3995.
[35]
Carroll C. W, Milks K. J, Straight A. F (2010) Dual recognition of CENP-A nucleosomes is required for centromere assembly. J Cell Biol 189: 1143–1155.
[36]
Carroll C. W, Silva M. C, Godek K. M, Jansen L. E, Straight A. F (2009) Centromere assembly requires the direct recognition of CENP-A nucleosomes by CENP-N. Nat Cell Biol 11: 896–902.
[37]
Okada T, Ohzeki J, Nakano M, Yoda K, Brinkley W. R, et al. (2007) CENP-B controls centromere formation depending on the chromatin context. Cell 131: 1287–1300.
[38]
Bergmann J. H, Rodriguez M. G, Martins N. M, Kimura H, Kelly D. A, et al. (2011) Epigenetic engineering shows H3K4me2 is required for HJURP targeting and CENP-A assembly on a synthetic human kinetochore. Embo J 30: 328–340.
[39]
Nakano M, Cardinale S, Noskov V. N, Gassmann R, Vagnarelli P, et al. (2008) Inactivation of a human kinetochore by specific targeting of chromatin modifiers. Dev Cell 14: 507–522.
[40]
Meselson M, Stahl F. W (1958) The replication of DNA in Escherichia coli. Proc Natl Acad Sci U S A 44: 671–682.
[41]
Misteli T (2001) The concept of self-organization in cellular architecture. J Cell Biol 155: 181–185.
[42]
Amano M, Suzuki A, Hori T, Backer C, Okawa K, et al. (2009) The CENP-S complex is essential for the stable assembly of outer kinetochore structure. J Cell Biol 186: 173–182.
[43]
Hellwig D, Munch S, Orthaus S, Hoischen C, Hemmerich P, et al. (2008) Live-cell imaging reveals sustained centromere binding of CENP-T via CENP-A and CENP-B. J Biophotonics 1: 245–254.
[44]
Kim H, Lee M, Lee S, Park B, Koh W, et al. (2009) Cancer-upregulated gene 2 (CUG2), a new component of centromere complex, is required for kinetochore function. Mol Cells 27: 697–701.
[45]
Shelby R. D, Vafa O, Sullivan K. F (1997) Assembly of CENP-A into centromeric chromatin requires a cooperative array of nucleosomal DNA contact sites. J Cell Biol 136: 501–513.
[46]
Tomkiel J, Cooke C. A, Saitoh H, Bernat R. L, Earnshaw W. C (1994) CENP-C is required for maintaining proper kinetochore size and for a timely transition to anaphase. J Cell Biol 125: 531–545.
[47]
Hemmerich P, Weidtkamp-Peters S, Hoischen C, Schmiedeberg L, Erliandri I, et al. (2008) Dynamics of inner kinetochore assembly and maintenance in living cells. J Cell Biol 180: 1101–1114.
[48]
Ribeiro S. A, Vagnarelli P, Dong Y, Hori T, McEwen B. F, et al. (2010) A super-resolution map of the vertebrate kinetochore. Proc Natl Acad Sci U S A 107: 10484–10489.
[49]
Shelby R. D, Monier K, Sullivan K. F (2000) Chromatin assembly at kinetochores is uncoupled from DNA replication. J Cell Biol 151: 1113–1118.
[50]
Brenner S, Pepper D, Berns M. W, Tan E, Brinkley B. R (1981) Kinetochore structure, duplication, and distribution in mammalian cells: analysis by human autoantibodies from scleroderma patients. J Cell Biol 91: 95–102.
[51]
Bernat R. L, Delannoy M. R, Rothfield N. F, Earnshaw W. C (1991) Disruption of centromere assembly during interphase inhibits kinetochore morphogenesis and function in mitosis. Cell 66: 1229–1238.
[52]
Monier K, Mouradian S, Sullivan K. F (2007) DNA methylation promotes Aurora-B-driven phosphorylation of histone H3 in chromosomal subdomains. J Cell Sci 120: 101–114.