All Title Author
Keywords Abstract

PLOS Biology  2011 

The Homeobox Protein CEH-23 Mediates Prolonged Longevity in Response to Impaired Mitochondrial Electron Transport Chain in C. elegans

DOI: 10.1371/journal.pbio.1001084

Full-Text   Cite this paper   Add to My Lib

Abstract:

Recent findings indicate that perturbations of the mitochondrial electron transport chain (METC) can cause extended longevity in evolutionarily diverse organisms. To uncover the molecular basis of how altered METC increases lifespan in C. elegans, we performed an RNAi screen and revealed that three predicted transcription factors are specifically required for the extended longevity of mitochondrial mutants. In particular, we demonstrated that the nuclear homeobox protein CEH-23 uniquely mediates the longevity but not the slow development, reduced brood size, or resistance to oxidative stress associated with mitochondrial mutations. Furthermore, we showed that ceh-23 expression levels are responsive to altered METC, and enforced overexpression of ceh-23 is sufficient to extend lifespan in wild-type background. Our data point to mitochondria-to-nucleus communications to be key for longevity determination and highlight CEH-23 as a novel longevity factor capable of responding to mitochondrial perturbations. These findings provide a new paradigm for how mitochondria impact aging and age-dependent diseases.

References

[1]  Walter L, Lee S. S (2009) Mitochondria as key determinant of aging. Encyclopedia of Life Sciences. doi:10.1002/9780470015902.a0020881.
[2]  Reeve A. K, Krishnan K. J, Turnbull D (2008) Mitochondrial DNA mutations in disease, aging, and neurodegeneration. Ann N Y Acad Sci 1147: 21–29.
[3]  Van Raamsdonk J. M, Hekimi S (2010) Reactive oxygen species and aging in caenorhabditis elegans: causal or casual relationship? Antioxid Redox Signal.
[4]  Wallace D. C (2005) A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 39: 359–407.
[5]  Kirchman P. A, Kim S, Lai C. Y, Jazwinski S. M (1999) Interorganelle signaling is a determinant of longevity in Saccharomyces cerevisiae. Genetics 152: 179–190.
[6]  Feng J, Bussiere F, Hekimi S (2001) Mitochondrial electron transport is a key determinant of life span in Caenorhabditis elegans. Dev Cell 1: 633–644.
[7]  Felkai S, Ewbank J. J, Lemieux J, Labbe J. C, Brown G. G, et al. (1999) CLK-1 controls respiration, behavior and aging in the nematode Caenorhabditis elegans. Embo J 18: 1783–1792.
[8]  Lee S. S, Lee R. Y, Fraser A. G, Kamath R. S, Ahringer J, et al. (2003) A systematic RNAi screen identifies a critical role for mitochondria in C. elegans longevity. Nat Genet 33: 40–48.
[9]  Dillin A, Hsu A. L, Arantes-Oliveira N, Lehrer-Graiwer J, Hsin H, et al. (2002) Rates of behavior and aging specified by mitochondrial function during development. Science 298: 2398–2401.
[10]  Hansen M, Hsu A. L, Dillin A, Kenyon C (2005) New genes tied to endocrine, metabolic, and dietary regulation of lifespan from a Caenorhabditis elegans genomic RNAi screen. PLoS Genet 1: 119–128. doi:10.1371/journal.pgen.0010017.
[11]  Curran S. P, Ruvkun G (2007) Lifespan regulation by evolutionarily conserved genes essential for viability. PLoS Genet 3: e56. doi:10.1371/journal.pgen.0030056.
[12]  Rea S. L, Ventura N, Johnson T. E (2007) Relationship between mitochondrial electron transport chain dysfunction, development, and life extension in Caenorhabditis elegans. PLoS Biol 5: e259. doi:10.1371/journal.pbio.0050259.
[13]  Chen D, Pan K. Z, Palter J. E, Kapahi P (2007) Longevity determined by developmental arrest genes in Caenorhabditis elegans. Aging Cell 6: 525–533.
[14]  Copeland J. M, Cho J, Lo T Jr, Hur J. H, Bahadorani S, et al. (2009) Extension of Drosophila life span by RNAi of the mitochondrial respiratory chain. Curr Biol 19: 1591–1598.
[15]  Rera M, Monnier V, Tricoire H (2010) Mitochondrial electron transport chain dysfunction during development does not extend lifespan in Drosophila melanogaster. Mech Ageing Dev 131: 156–164.
[16]  Liu X, Jiang N, Hughes B, Bigras E, Shoubridge E, et al. (2005) Evolutionary conservation of the clk-1-dependent mechanism of longevity: loss of mclk1 increases cellular fitness and lifespan in mice. Genes Dev 19: 2424–2434.
[17]  Dell'agnello C, Leo S, Agostino A, Szabadkai G, Tiveron C, et al. (2007) Increased longevity and refractoriness to Ca(2+)-dependent neurodegeneration in Surf1 knockout mice. Hum Mol Genet 16: 431–444.
[18]  Ishii N, Fujii M, Hartman P. S, Tsuda M, Yasuda K, et al. (1998) A mutation in succinate dehydrogenase cytochrome b causes oxidative stress and ageing in nematodes. Nature 394: 694–697.
[19]  Yang W, Hekimi S (2010) Two modes of mitochondrial dysfunction lead independently to lifespan extension in Caenorhabditis elegans. Aging Cell 9: 433–447.
[20]  Tsang W. Y, Sayles L. C, Grad L. I, Pilgrim D. B, Lemire B. D (2001) Mitochondrial respiratory chain deficiency in Caenorhabditis elegans results in developmental arrest and increased life span. J Biol Chem 276: 32240–32246.
[21]  Liu Z, Sekito T, Spirek M, Thornton J, Butow R. A (2003) Retrograde signaling is regulated by the dynamic interaction between Rtg2p and Mks1p. Mol Cell 12: 401–411.
[22]  Liu Z, Butow R. A (2006) Mitochondrial retrograde signaling. Annu Rev Genet 40: 159–185.
[23]  Woo D. K, Phang T. L, Trawick J. D, Poyton R. O (2009) Multiple pathways of mitochondrial-nuclear communication in yeast: intergenomic signaling involves ABF1 and affects a different set of genes than retrograde regulation. Biochim Biophys Acta 1789: 135–145.
[24]  Guha M, Pan H, Fang J. K, Avadhani N. G (2009) Heterogeneous nuclear ribonucleoprotein A2 is a common transcriptional coactivator in the nuclear transcription response to mitochondrial respiratory stress. Mol Biol Cell 20: 4107–4119.
[25]  Guha M, Fang J. K, Monks R, Birnbaum M. J, Avadhani N. G (2010) Activation of Akt is essential for the propagation of mitochondrial respiratory stress signaling and activation of the transcriptional coactivator heterogeneous ribonucleoprotein A2. Mol Biol Cell 21: 3578–3589.
[26]  Butow R. A, Avadhani N. G (2004) Mitochondrial signaling: the retrograde response. Mol Cell 14: 1–15.
[27]  Muller F. L, Lustgarten M. S, Jang Y, Richardson A, Van Remmen H (2007) Trends in oxidative aging theories. Free Radic Biol Med 43: 477–503.
[28]  Woo D. K, Poyton R. O (2009) The absence of a mitochondrial genome in rho0 yeast cells extends lifespan independently of retrograde regulation. Exp Gerontol 44: 390–397.
[29]  Reece-Hoyes J. S, Deplancke B, Shingles J, Grove C. A, Hope I. A, et al. (2005) A compendium of Caenorhabditis elegans regulatory transcription factors: a resource for mapping transcription regulatory networks. Genome Biol 6: R110.
[30]  Timmons L, Court D. L, Fire A (2001) Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene 263: 103–112.
[31]  Hsu A. L, Murphy C. T, Kenyon C (2003) Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science 300: 1142–1145.
[32]  Van Gilst M. R, Hadjivassiliou H, Jolly A, Yamamoto K. R (2005) Nuclear hormone receptor NHR-49 controls fat consumption and fatty acid composition in C. elegans. PLoS Biol 3: e53. doi:10.1371/journal.pbio.0030053.
[33]  Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R (1993) A C. elegans mutant that lives twice as long as wild type. Nature 366: 461–464.
[34]  Panowski S. H, Wolff S, Aguilaniu H, Durieux J, Dillin A (2007) PHA-4/Foxa mediates diet-restriction-induced longevity of C. elegans. Nature 447: 550–555.
[35]  Torgovnick A, Schiavi A, Testi R, Ventura N (2010) A role for p53 in mitochondrial stress response control of longevity in C. elegans. Exp Gerontol 45: 550–557.
[36]  Ogg S, Paradis S, Gottlieb S, Patterson G. I, Lee L, et al. (1997) The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 389: 994–999.
[37]  Friedman D. B, Johnson T. E (1988) A mutation in the age-1 gene in Caenorhabditis elegans lengthens life and reduces hermaphrodite fertility. Genetics 118: 75–86.
[38]  Morris J. Z, Tissenbaum H. A, Ruvkun G (1996) A phosphatidylinositol-3-OH kinase family member regulating longevity and diapause in Caenorhabditis elegans. Nature 382: 536–539.
[39]  Guarente L, Kenyon C (2000) Genetic pathways that regulate ageing in model organisms. Nature 408: 255–262.
[40]  Lakowski B, Hekimi S (1998) The genetics of caloric restriction in Caenorhabditis elegans. Proc Natl Acad Sci U S A 95: 13091–13096.
[41]  Ni Z, Lee S. S (2010) RNAi screens to identify components of gene networks that modulate aging in Caenorhabditis elegans. Brief Funct Genomics 9: 53–64.
[42]  Altun-Gultekin Z, Andachi Y, Tsalik E. L, Pilgrim D, Kohara Y, et al. (2001) A regulatory cascade of three homeobox genes, ceh-10, ttx-3 and ceh-23, controls cell fate specification of a defined interneuron class in C. elegans. Development 128: 1951–1969.
[43]  Shen L, Hu Y, Cai T, Lin X, Wang D (2010) Regulation of longevity by genes required for the functions of AIY interneuron in nematode Caenorhabditis elegans. Mech Ageing Dev 131: 732–738.
[44]  Johnson T. E, de Castro E, Hegi de Castro S, Cypser J, Henderson S, et al. (2001) Relationship between increased longevity and stress resistance as assessed through gerontogene mutations in Caenorhabditis elegans. Exp Gerontol 36: 1609–1617.
[45]  Zinovyeva A. Y, Forrester W. C (2005) The C. elegans Frizzled CFZ-2 is required for cell migration and interacts with multiple Wnt signaling pathways. Dev Biol 285: 447–461.
[46]  Zallen J. A, Kirch S. A, Bargmann C. I (1999) Genes required for axon pathfinding and extension in the C. elegans nerve ring. Development 126: 3679–3692.
[47]  Hunt-Newbury R, Viveiros R, Johnsen R, Mah A, Anastas D, et al. (2007) High-throughput in vivo analysis of gene expression in Caenorhabditis elegans. PLoS Biol 5: e237. doi:10.1371/journal.pbio.0050237.
[48]  Cristina D, Cary M, Lunceford A, Clarke C, Kenyon C (2009) A regulated response to impaired respiration slows behavioral rates and increases lifespan in Caenorhabditis elegans. PLoS Genet 5: e1000450. doi:10.1371/journal.pgen.1000450.
[49]  Hsieh J, Fire A (2000) Recognition and silencing of repeated DNA. Annu Rev Genet 34: 187–204.
[50]  Biswas G, Adebanjo O. A, Freedman B. D, Anandatheerthavarada H. K, Vijayasarathy C, et al. (1999) Retrograde Ca2+ signaling in C2C12 skeletal myocytes in response to mitochondrial genetic and metabolic stress: a novel mode of inter-organelle crosstalk. Embo J 18: 522–533.
[51]  Falk M. J, Zhang Z, Rosenjack J. R, Nissim I, Daikhin E, et al. (2008) Metabolic pathway profiling of mitochondrial respiratory chain mutants in C. elegans. Mol Genet Metab 93: 388–397.
[52]  Zuryn S, Kuang J, Tuck A, Ebert P. RMitochondrial dysfunction in Caenorhabditis elegans causes metabolic restructuring, but this is not linked to longevity. Mech Ageing Dev 131: 554–561.
[53]  Kayser E. B, Sedensky M. M, Morgan P. G, Hoppel C. L (2004) Mitochondrial oxidative phosphorylation is defective in the long-lived mutant clk-1. J Biol Chem 279: 54479–54486.
[54]  Yang W, Li J, Hekimi S (2007) A measurable increase in oxidative damage due to reduction in superoxide detoxification fails to shorten the life span of long-lived mitochondrial mutants of Caenorhabditis elegans. Genetics 177: 2063–2074.
[55]  Wang B. B, Muller-Immergluck M. M, Austin J, Robinson N. T, Chisholm A, et al. (1993) A homeotic gene cluster patterns the anteroposterior body axis of C. elegans. Cell 74: 29–42.
[56]  Forrester W. C, Perens E, Zallen J. A, Garriga G (1998) Identification of Caenorhabditis elegans genes required for neuronal differentiation and migration. Genetics 148: 151–165.
[57]  Bishop N. A, Guarente L (2007) Two neurons mediate diet-restriction-induced longevity in C. elegans. Nature 447: 545–549.
[58]  Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77: 71–94.
[59]  Hobert O (2002) PCR fusion-based approach to create reporter gene constructs for expression analysis in transgenic C. elegans. Biotechniques 32: 728–730.
[60]  Berkowitz L. A, Knight A. L, Caldwell G. A, Caldwell K. A (2008) Generation of stable transgenic C. elegans using microinjection. J Vis Exp.
[61]  Wong A, Boutis P, Hekimi S (1995) Mutations in the clk-1 gene of Caenorhabditis elegans affect developmental and behavioral timing. Genetics 139: 1247–1259.
[62]  Troemel E. R, Chu S. W, Reinke V, Lee S. S, Ausubel F. M, et al. (2006) p38 MAPK regulates expression of immune response genes and contributes to longevity in C. elegans. PLoS Genet 2: e183. doi:10.1371/journal.pgen.0020183.
[63]  Lee S. J, Hwang A. B, Kenyon C (2010) Inhibition of respiration extends C. elegans life span via reactive oxygen species that increase HIF-1 activity. Curr Biol 20: 2131–2136.
[64]  Yang W, Hekimi S (2010) A mitochondrial superoxide signal triggers increased longevity in Caenorhabditis elegans. PLoS Biol 8: e1000556. doi:10.1371/journal.pbio.1000556.
[65]  Durieux J, Wolff S, Dillin A (2011) The cell-non-autonomous nature of electron transport chain-mediated longevity. Cell 144: 79–91.

Full-Text

comments powered by Disqus