All Title Author
Keywords Abstract

PLOS Biology  2010 

Distinct Olfactory Signaling Mechanisms in the Malaria Vector Mosquito Anopheles gambiae

DOI: 10.1371/journal.pbio.1000467

Full-Text   Cite this paper   Add to My Lib

Abstract:

Anopheles gambiae is the principal Afrotropical vector for human malaria, in which olfaction mediates a wide range of both adult and larval behaviors. Indeed, mosquitoes depend on the ability to respond to chemical cues for feeding, host preference, and mate location/selection. Building upon previous work that has characterized a large family of An. gambiae odorant receptors (AgORs), we now use behavioral analyses and gene silencing to examine directly the role of AgORs, as well as a newly identified family of candidate chemosensory genes, the An. gambiae variant ionotropic receptors (AgIRs), in the larval olfactory system. Our results validate previous studies that directly implicate specific AgORs in behavioral responses to DEET as well as other odorants and reveal the existence of at least two distinct olfactory signaling pathways that are active in An. gambiae. One system depends directly on AgORs; the other is AgOR-independent and requires the expression and activity of AgIRs. In addition to clarifying the mechanistic basis for olfaction in this system, these advances may ultimately enhance the development of vector control strategies, targeting olfactory pathways in mosquitoes to reduce the catastrophic effects of malaria and other mosquito-borne diseases.

References

[1]  Takken W, Knols B. G (1999) Odor-mediated behavior of Afrotropical malaria mosquitoes. Annu Rev Entomol 44: 131–157.
[2]  Fox A. N, Pitts R. J, Robertson H. M, Carlson J. R, Zwiebel L. J (2001) Candidate odorant receptors from the malaria vector mosquito Anopheles gambiae and evidence of down-regulation in response to blood feeding. Proc Natl Acad Sci U S A 98: 14693–14697.
[3]  Merrill C. E, Pitts R. J, Zwiebel L. J (2003) Molecular characterization of arrestin family members in the malaria vector mosquito, Anopheles gambiae. Insect Molecular Biology 12: 641–650.
[4]  Hallem E, Ho M. G, Carlson J. R (2004) The molecular basis of odor coding in the drosophila antenna. Cell 117: 965–979.
[5]  Pitts R. J, Fox A. N, Zwiebel L. J (2004) A highly conserved candidate chemoreceptor expressed in both olfactory and gustatory tissues in the malaria vector Anopheles gambiae. Proc Natl Acad Sci U S A 101: 5058–5063.
[6]  Kwon H. W, Lu T, Rutzler M, Zwiebel L. J (2006) Olfactory responses in a gustatory organ of the malaria vector mosquito Anopheles gambiae. Proc Natl Acad Sci U S A 103: 13526–13531.
[7]  Hill C. A, Fox A. N, Pitts R. J, Kent L. B, Tan P. L, et al. (2002) G protein-coupled receptors in Anopheles gambiae. Science 298: 176–178.
[8]  Benton R, Sachse S, Michnick S. W, Vosshall L. B (2006) Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo. PLoS Biol 4: e20. doi:10.1371/journal.pbio.0040020.
[9]  Lundin C, Kall L, Kreher S. A, Kapp K, Sonnhammer E. L, et al. (2007) Membrane topology of the Drosophila OR83b odorant receptor. FEBS Lett 581: 5601–5604.
[10]  Sato K, Pellegrino M, Nakagawa T, Nakagawa T, Vosshall L. B, et al. (2008) Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature 452: 1002–1006.
[11]  Wicher D, Schafer R, Bauernfeind R, Stensmyr M. C, Heller R, et al. (2008) Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels. Nature 452: 1007–1011.
[12]  Benton R, Vannice K. S, Gomez-Diaz C, Vosshall L. B (2009) Variant ionotropic glutamate receptors as chemosensory receptors in Drosophila. Cell 136: 149–162.
[13]  Larsson M. C, Domingos A. I, Jones W. D, Chiappe M. E, Amrein H, et al. (2004) Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron 43: 703–714.
[14]  Xia Y, Wang G, Buscariollo D, Pitts J. R, Wenger H, et al. (2008) The molecular basis of olfactory-based behavior in Anopheles gambiae larvae. Proc Natl Acad Sci U S A 105: 6433–6438.
[15]  Cork A, Park K. C (1996) Identification of electrophysiologically-active compounds for the malaria mosquito, Anopheles gambiae, in human sweat extracts. Med Vet Entomol 10: 269–276.
[16]  Bernier U. R, Kline D. L, Barnard D. R, Schreck C. E, Yost R. A (2000) Analysis of human skin emanations by gas chromatography/mass spectrometry. 2. Identification of volatile compounds that are candidate attractants for the yellow fever mosquito (Aedes aegypti). Anal Chem 72: 747–756.
[17]  Carey A. F, Wang G, Su C. Y, Zwiebel L. J, Carlson J. R (2010) Odorant reception in the malaria mosquito Anopheles gambiae. Nature 464: 66–71.
[18]  Wang G, Carey A, Carlson J. R, Zwiebel L. J (2010) The molecular basis for odor coding in the malaria vector Anopheles gambiae. Proc Natl Acad Sci U S A.
[19]  Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425.
[20]  Pfaffl M. W (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29: e45.
[21]  Croset V, Rytz R, Cummins S. F, Budd A, Brawand D, Kaessmann H, Gibson T. J, Benton R (2010) Ancient protostome origin of chemosensory ionotropic glutamate receptors and the evolution of insect taste and olfaction. PLoS Genet 6: e1001064. doi:10.1371/journal.pgen.1001064.
[22]  Mayer M. L (2006) Glutamate receptors at atomic resolution. Nature 440: 456–462.
[23]  Qiu Y. T, van Loon J. J, Takken W, Meijerink J, Smid H. M (2006) Olfactory coding in antennal neurons of the malaria mosquito, Anopheles gambiae. Chem Senses 31: 845–863.
[24]  Syed Z, Leal W. S (2009) Acute olfactory response of Culex mosquitoes to a human- and bird-derived attractant. Proc Natl Acad Sci U S A 106: 18803–18808.
[25]  Ditzen M, Pellegrino M, Vosshall L. B (2008) Insect odorant receptors are molecular targets of the insect repellent DEET. Science 319: 1838–1842.
[26]  Syed Z, Leal W. S (2008) Mosquitoes smell and avoid the insect repellent DEET. Proc Natl Acad Sci U S A.
[27]  Stanczyk N. M, Brookfield J. F, Ignell R, Logan J. G, Field L. M (2010) Behavioral insensitivity to DEET in Aedes aegypti is a genetically determined trait residing in changes in sensillum function. Proc Natl Acad Sci U S A 107: 8575–8580.
[28]  Meijerink J, Braks M. A, Braak A. A, Adam W, Dekker T, et al. (2000) Identification of olfactory stimulants for Anopheles gambiae from human sweat samples. J Chem Ecol 26: 1367–1382.
[29]  Meijerink J, Braks M. A. H, van Loon J. J. A (2001) Olfactory receptors on the antennae of the malaria mosquito Anopheles gambiae are sensitive to ammonia and other sweat-borne components. J Insect Physiol 47: 455–464.

Full-Text

comments powered by Disqus