All Title Author
Keywords Abstract

PLOS Biology  2008 

Evolutionary Plasticity of Polycomb/Trithorax Response Elements in Drosophila Species

DOI: 10.1371/journal.pbio.0060261

Full-Text   Cite this paper   Add to My Lib


cis-Regulatory DNA elements contain multiple binding sites for activators and repressors of transcription. Among these elements are enhancers, which establish gene expression states, and Polycomb/Trithorax response elements (PREs), which take over from enhancers and maintain transcription states of several hundred developmentally important genes. PREs are essential to the correct identities of both stem cells and differentiated cells. Evolutionary differences in cis-regulatory elements are a rich source of phenotypic diversity, and functional binding sites within regulatory elements turn over rapidly in evolution. However, more radical evolutionary changes that go beyond motif turnover have been difficult to assess. We used a combination of genome-wide bioinformatic prediction and experimental validation at specific loci, to evaluate PRE evolution across four Drosophila species. Our results show that PRE evolution is extraordinarily dynamic. First, we show that the numbers of PREs differ dramatically between species. Second, we demonstrate that functional binding sites within PREs at conserved positions turn over rapidly in evolution, as has been observed for enhancer elements. Finally, although it is theoretically possible that new elements can arise out of nonfunctional sequence, evidence that they do so is lacking. We show here that functional PREs are found at nonorthologous sites in conserved gene loci. By demonstrating that PRE evolution is not limited to the adaptation of preexisting elements, these findings document a novel dimension of cis-regulatory evolution.


[1]  Papatsenko D, Levine M (2007) A rationale for the enhanceosome and other evolutionarily constrained enhancers. Curr Biol 17: R955–957.
[2]  Li XY, MacArthur S, Bourgon R, Nix D, Pollard DA, et al. (2008) Transcription factors bind thousands of active and inactive regions in the Drosophila blastoderm. PLoS Biol 6: e27. doi:10.1371/journal.pbio.0060027.
[3]  Simon J, Chiang A, Bender W, Shimell MJ, O'Connor M (1993) Elements of the Drosophila bithorax complex that mediate repression by Polycomb group products. Dev Biol 158: 131–144.
[4]  Chan CS, Rastelli L, Pirrotta V (1994) A Polycomb response element in the Ubx gene that determines an epigenetically inherited state of repression. EMBO J 13: 2553–2564.
[5]  Ringrose L, Paro R (2004) Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins. Annu Rev Genet 38: 413–443.
[6]  Breiling A, Sessa L, Orlando V (2007) Biology of polycomb and trithorax group proteins. Int Rev Cytol 258: 83–136.
[7]  Schwartz YB, Pirrotta V (2007) Polycomb silencing mechanisms and the management of genomic programmes. Nat Rev Genet 8: 9–22.
[8]  Ringrose L, Paro R (2007) Polycomb/Trithorax response elements and epigenetic memory of cell identity. Development 134: 223–232.
[9]  Negre N, Hennetin J, Sun LV, Lavrov S, Bellis M, et al. (2006) Chromosomal distribution of PcG proteins during Drosophila development. PLoS Biol 4: e170. doi:10.1371/journal.pbio.0040170.
[10]  Schwartz YB, Kahn TG, Nix DA, Li XY, Bourgon R, et al. (2006) Genome-wide analysis of Polycomb targets in Drosophila melanogaster. Nat Genet 38: 700–705.
[11]  Tolhuis B, de Wit E, Muijrers I, Teunissen H, Talhout W, et al. (2006) Genome-wide profiling of PRC1 and PRC2 Polycomb chromatin binding in Drosophila melanogaster. Nat Genet 38: 694–699.
[12]  Lee TI, Jenner RG, Boyer LA, Guenther MG, Levine SS, et al. (2006) Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 125: 301–313.
[13]  Bracken AP, Dietrich N, Pasini D, Hansen KH, Helin K (2006) Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev 20: 1123–1136.
[14]  Boyer LA, Plath K, Zeitlinger J, Brambrink T, Medeiros LA, et al. (2006) Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441: 349–353.
[15]  Ringrose L (2007) Polycomb comes of age: genome-wide profiling of target sites. Curr Opin Cell Biol 19: 290–297.
[16]  Lee N, Maurange C, Ringrose L, Paro R (2005) Suppression of Polycomb group proteins by JNK signalling induces transdetermination in Drosophila imaginal discs. Nature 438: 234–237.
[17]  Sparmann A, van Lohuizen M (2006) Polycomb silencers control cell fate, development and cancer. Nat Rev Cancer 6: 846–856.
[18]  Ringrose L, Rehmsmeier M, Dura JM, Paro R (2003) Genome-wide prediction of Polycomb/Trithorax response elements in Drosophila melanogaster. Dev Cell 5: 759–771.
[19]  Fiedler T, Rehmsmeier M (2006) jPREdictor: a versatile tool for the prediction of cis-regulatory elements. Nucleic Acids Res 34: W546–550.
[20]  Dellino GI, Tatout C, Pirrotta V (2002) Extensive conservation of sequences and chromatin structures in the bxd polycomb response element among Drosophilid species. Int J Dev Biol 46: 133–141.
[21]  Wray GA (2007) The evolutionary significance of cis-regulatory mutations. Nat Rev Genet 8: 206–216.
[22]  Prud'homme B, Gompel N, Carroll SB (2007) Emerging principles of regulatory evolution. Proc Natl Acad Sci U S A 104(Suppl 1): 8605–8612.
[23]  Dermitzakis ET, Clark AG (2002) Evolution of transcription factor binding sites in Mammalian gene regulatory regions: conservation and turnover. Mol Biol Evol 19: 1114–1121.
[24]  Costas J, Casares F, Vieira J (2003) Turnover of binding sites for transcription factors involved in early Drosophila development. Gene 310: 215–220.
[25]  Romano LA, Wray GA (2003) Conservation of Endo16 expression in sea urchins despite evolutionary divergence in both cis and trans-acting components of transcriptional regulation. Development 130: 4187–4199.
[26]  Ludwig MZ, Bergman C, Patel NH, Kreitman M (2000) Evidence for stabilizing selection in a eukaryotic enhancer element. Nature 403: 564–567.
[27]  Ludwig MZ, Palsson A, Alekseeva E, Bergman CM, Nathan J, et al. (2005) Functional evolution of a cis-regulatory module. PLoS Biol 3: e93. doi:10.1371/journal.pbio.0030093.
[28]  Gompel N, Prud'homme B, Wittkopp PJ, Kassner VA, Carroll SB (2005) Chance caught on the wing: cis-regulatory evolution and the origin of pigment patterns in Drosophila. Nature 433: 481–487.
[29]  Prud'homme B, Gompel N, Rokas A, Kassner VA, Williams TM, et al. (2006) Repeated morphological evolution through cis-regulatory changes in a pleiotropic gene. Nature 440: 1001–1002.
[30]  McGregor AP, Orgogozo V, Delon I, Zanet J, Srinivasan DG, et al. (2007) Morphological evolution through multiple cis-regulatory mutations at a single gene. Nature 448: 587–590.
[31]  King MC, Wilson AC (1975) Evolution at two levels in humans and chimpanzees. Science 188: 107–116.
[32]  Carroll SB (1995) Homeotic genes and the evolution of arthropods and chordates. Nature 376: 479–485.
[33]  Andolfatto P (2005) Adaptive evolution of non-coding DNA in Drosophila. Nature 437: 1149–1152.
[34]  Richards S, Liu Y, Bettencourt BR, Hradecky P, Letovsky S, et al. (2005) Comparative genome sequencing of Drosophila pseudoobscura: chromosomal, gene, and cis-element evolution. Genome Res 15: 1–18.
[35]  Clark AG, Eisen MB, Smith DR, Bergman CM, Oliver B, et al. (2007) Evolution of genes and genomes on the Drosophila phylogeny. Nature 450: 203–218.
[36]  Stark A, Lin MF, Kheradpour P, Pedersen JS, Parts L, et al. (2007) Discovery of functional elements in 12 Drosophila genomes using evolutionary signatures. Nature 450: 219–232.
[37]  Emberly E, Rajewsky N, Siggia ED (2003) Conservation of regulatory elements between two species of Drosophila. BMC Bioinformatics 4: 57.
[38]  Berman BP, Pfeiffer BD, Laverty TR, Salzberg SL, Rubin GM, et al. (2004) Computational identification of developmental enhancers: conservation and function of transcription factor binding-site clusters in Drosophila melanogaster and Drosophila pseudoobscura. Genome Biol 5: R61.
[39]  Sinha S, Schroeder MD, Unnerstall U, Gaul U, Siggia ED (2004) Cross-species comparison significantly improves genome-wide prediction of cis-regulatory modules in Drosophila. BMC Bioinformatics 5: 1–12.
[40]  King DC, Taylor J, Zhang Y, Cheng Y, Lawson HA, et al. (2007) Finding cis-regulatory elements using comparative genomics: some lessons from ENCODE data. Genome Res 17: 775–786.
[41]  MacArthur S, Brookfield JFY (2004) Expected rates and modes of evolution of enhancer sequences. Mol Biol Evol 21: 1064–1073.
[42]  Stone J, Wray GA (2001) Rapid evolution of cis-regulatory sequences via local point mutations. Mol Biol Evol 18: 1764–1770.
[43]  Hagstrom K, Muller M, Schedl P (1997) A Polycomb and GAGA dependent silencer adjoins the Fab-7 boundary in the Drosophila bithorax complex. Genetics 146: 1365–1380.
[44]  Dejardin J, Rappailles A, Cuvier O, Grimaud C, Decoville M, et al. (2005) Recruitment of Drosophila Polycomb group proteins to chromatin by DSP1. Nature 434: 533–538.
[45]  Blastyak A, Mishra RK, Karch F, Gyurkovics H (2006) Efficient and specific targeting of Polycomb group proteins requires cooperative interaction between Grainyhead and Pleiohomeotic. Mol Cell Biol 26: 1434–1444.
[46]  Brown JL, Grau DJ, DeVido SK, Kassis JA (2005) An Sp1/KLF binding site is important for the activity of a Polycomb group response element from the Drosophila engrailed gene. Nucleic Acids Res 33: 5181–5189.
[47]  Schmitt S, Prestel M, Paro R (2005) Intergenic transcription through a polycomb group response element counteracts silencing. Genes Dev 19: 697–708.
[48]  Horard B, Tatout C, Poux S, Pirrotta V (2000) Structure of a polycomb response element and in vitro binding of polycomb group complexes containing GAGA factor. Mol Cell Biol 20: 3187–3197.
[49]  Mishra RK, Mihaly J, Barges S, Spierer A, Karch F, et al. (2001) The iab-7 polycomb response element maps to a nucleosome-free region of chromatin and requires both GAGA and pleiohomeotic for silencing activity. Mol Cell Biol 21: 1311–1318.
[50]  Dejardin J, Cavalli G (2004) Chromatin inheritance upon Zeste-mediated Brahma recruitment at a minimal cellular memory module. EMBO J 23: 857–868.
[51]  Americo J, Whiteley M, Brown JL, Fujioka M, Jaynes JB, et al. (2002) A complex array of DNA-binding proteins required for pairing-sensitive silencing by a polycomb group response element from the Drosophila engrailed gene. Genetics 160: 1561–1571.
[52]  Fauvarque MO, Dura JM (1993) polyhomeotic regulatory sequences induce developmental regulator-dependent variegation and targeted P-element insertions in Drosophila. Genes Dev 7: 1508–1520.
[53]  Kassis JA (1994) Unusual properties of regulatory DNA from the Drosophila engrailed gene: three “pairing-sensitive” sites within a 1.6-kb region. Genetics 136: 1025–1038.
[54]  Macdonald SJ, Long AD (2006) Fine scale structural variants distinguish the genomes of Drosophila melanogaster and D. pseudoobscura. Genome Biol 7: R67.
[55]  Zuckerkandl E (2002) Why so many noncoding nucleotides? The eukaryote genome as an epigenetic machine. Genetica 115: 105–129.
[56]  Gibert JM, Peronnet F, Schlotterer C (2007) Phenotypic plasticity in Drosophila pigmentation caused by temperature sensitivity of a chromatin regulator network. PLoS Genet 3: e30. doi:10.1371/journal.pgen.0030030.
[57]  Fritsch C, Brown JL, Kassis JA, Muller J (1999) The DNA-binding polycomb group protein pleiohomeotic mediates silencing of a Drosophila homeotic gene. Development 126: 3905–3913.
[58]  Busturia A, Lloyd A, Bejarano F, Zavortink M, Xin H, et al. (2001) The MCP silencer of the Drosophila Abd-B gene requires both Pleiohomeotic and GAGA factor for the maintenance of repression. Development 128: 2163–2173.
[59]  Ng CS, Kopp A (2008) Sex combs are important for male mating success in Drosophila melanogaster. Behav Genet 38: 195–201.
[60]  Barmina O, Kopp A (2007) Sex-specific expression of a HOX gene associated with rapid morphological evolution. Dev Biol 311: 277–286.
[61]  Randsholt NB, Santamaria P (2008) How Drosophila change their combs: the Hox gene Sex combs reduced and sex comb variation among Sophophora species. Evol Dev 10: 121–133.
[62]  Ringrose L, Ehret H, Paro R (2004) Distinct contributions of histone H3 lysine 9 and 27 methylation to locus-specific stability of polycomb complexes. Mol Cell 16: 641–653.
[63]  Corona DF, Armstrong JA, Tamkun JW (2004) Genetic and cytological analysis of Drosophila chromatin-remodeling factors. Methods Enzymol 377: 70–85.
[64]  Orlando V, Jane EP, Chinwalla V, Harte PJ, Paro R (1998) Binding of trithorax and Polycomb proteins to the bithorax complex: dynamic changes during early Drosophila embryogenesis. EMBO J 17: 5141–5150.


comments powered by Disqus

Contact Us


微信:OALib Journal