All Title Author
Keywords Abstract

PLOS Biology  2008 

Intergenic Locations of Rice Centromeric Chromatin

DOI: 10.1371/journal.pbio.0060286

Full-Text   Cite this paper   Add to My Lib

Abstract:

Centromeres are sites for assembly of the chromosomal structures that mediate faithful segregation at mitosis and meiosis. Plant and animal centromeres are typically located in megabase-sized arrays of tandem satellite repeats, making their precise mapping difficult. However, some rice centromeres are largely embedded in nonsatellite DNA, providing an excellent model to study centromere structure and evolution. We used chromatin immunoprecipitation and 454 sequencing to define the boundaries of nine of the 12 centromeres of rice. Centromere regions from chromosomes 8 and 9 were found to share synteny, most likely reflecting an ancient genome duplication. For four centromeres, we mapped discrete subdomains of binding by the centromeric histone variant CENH3. These subdomains were depleted in both intact and nonfunctional genes relative to interspersed subdomains lacking CENH3. The intergenic location of rice centromeric chromatin resembles the situation for human neocentromeres and supports a model of the evolution of centromeres from gene-poor regions.

References

[1]  Henikoff S, Ahmad K, Malik HS (2001) The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293: 1098–1102.
[2]  Karpen GH, Allshire RC (1997) The case for epigenetic effects on centromere identity and function. Trends Genet 13: 489–496.
[3]  Palmer DK, O'Day K, Wener MH, Andrews BS, Margolis RL (1987) A 17-kD centromere protein (CENP-A) copurifies with nucleosome core particles and with histones. J Cell Biol 104: 805–815.
[4]  Amor DJ, Choo KH (2002) Neocentromeres: role in human disease, evolution, and centromere study. Am J Hum Genet 71: 695–714.
[5]  Nasuda S, Hudakova S, Schubert I, Houben A, Endo TR (2005) Stable barley chromosomes without centromeric repeats. Proc Natl Acad Sci U S A 102: 9842–9847.
[6]  Heun P, Erhardt S, Blower MD, Weiss S, Skora AD, et al. (2006) Mislocalization of the Drosophila centromere-specific histone CID promotes formation of functional ectopic kinetochores. Dev Cell 10: 303–315.
[7]  Blower MD, Sullivan BA, Karpen GH (2002) Conserved organization of centromeric chromatin in flies and humans. Dev Cell 2: 319–330.
[8]  Chueh AC, Wong LH, Wong N, Choo KH (2005) Variable and hierarchical size distribution of L1-retroelement-enriched CENP-A clusters within a functional human neocentromere. Hum Mol Genet 14: 85–93.
[9]  Alonso A, Fritz B, Hasson D, Abrusan G, Cheung F, et al. (2007) Co-localization of CENP-C and CENP-H to discontinuous domains of CENP-A chromatin at human neocentromeres. Genome Biol 8: R148.
[10]  Nakano M, Cardinale S, Noskov VN, Gassmann R, Vagnarelli P, et al. (2008) Inactivation of a human kinetochore by specific targeting of chromatin modifiers. Dev Cell 14: 507–522.
[11]  Nagaki K, Cheng Z, Ouyang S, Talbert PB, Kim M, et al. (2004) Sequencing of a rice centromere uncovers active genes. Nat Genet 36: 138–145.
[12]  Yan H, Jin W, Nagaki K, Tian S, Ouyang S, et al. (2005) Transcription and histone modifications in the recombination-free region spanning a rice centromere. Plant Cell 17: 3227–3238.
[13]  Yan H, Ito H, Nobuta K, Ouyang S, Jin W, et al. (2006) Genomic and genetic characterization of rice Cen3 reveals extensive transcription and evolutionary implications of a complex centromere. Plant Cell 18: 2123–2133.
[14]  Cheng Z, Dong F, Langdon T, Ouyang S, Buell CR, et al. (2002) Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon. Plant Cell 14: 1691–1704.
[15]  Feng Q, Zhang Y, Hao P, Wang S, Fu G, et al. (2002) Sequence and analysis of rice chromosome 4. Nature 420: 316–320.
[16]  Rice Chromosome 10 Sequencing Consortium (2003) In-depth view of structure, activity, and evolution of rice chromosome 10. Science 300: 1566–1569.
[17]  International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436: 793–800.
[18]  Zhou S, Bechner MC, Place M, Churas CP, Pape L, et al. (2007) Validation of rice genome sequence by optical mapping. BMC Genomics 8: 278.
[19]  Talbert PB, Masuelli R, Tyagi AP, Comai L, Henikoff S (2002) Centromeric localization and adaptive evolution of an Arabidopsis histone H3 variant. Plant Cell 14: 1053–1066.
[20]  Van Hooser AA, Ouspenski II, Gregson HC, Starr DA, Yen TJ, et al. (2001) Specification of kinetochore-forming chromatin by the histone H3 variant CENP-A. J Cell Sci 114: 3529–3542.
[21]  Yu J, Wang J, Lin W, Li S, Li H, et al. (2005) The genomes of : a history of duplications. PLoS Biol 3: e38. doi:10.1371/journal.pbio.0030038.
[22]  Salse J, Bolot S, Throude M, Jouffe V, Piegu B, et al. (2008) Identification and characterization of shared duplications between rice and wheat provide new insight into grass genome evolution. Plant Cell 20: 11–24.
[23]  Bulazel KV, Ferreri GC, Eldridge MD, O'Neill RJ (2007) Species-specific shifts in centromere sequence composition are coincident with breakpoint reuse in karyotypically divergent lineages. Genome Biol 8: R170.
[24]  Ma J, Wing RA, Bennetzen JL, Jackson SA (2007) Evolutionary history and positional shift of a rice centromere. Genetics 177: 1217–1220.
[25]  Zou XH, Zhang FM, Zhang JG, Zang LL, Tang L, et al. (2008) Analysis of 142 genes resolves the rapid diversification of the rice genus. Genome Biol 9: R49.
[26]  Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24: 1586–1591.
[27]  Gaut BS, Morton BR, McCaig BC, Clegg MT (1996) Substitution rate comparisons between grasses and palms: synonymous rate differences at the nuclear gene adh parallel rate differences at the plastid gene rbcL. Proc Natl Acad Sci U S A 93: 10274–10279.
[28]  Ventura M, Archidiacono N, Rocchi M (2001) Centromere emergence in evolution. Genome Res 11: 595–599.
[29]  Zheng D, Gerstein MB (2006) A computational approach for identifying pseudogenes in the ENCODE regions. Genome Biol 7(Suppl 1): S13.1–10.
[30]  Ma J, Bennetzen JL (2004) Rapid recent growth and divergence of rice nuclear genomes. Proc Natl Acad Sci U S A 101: 12404–12410.
[31]  Ma J, Devos KM, Bennetzen JL (2004) Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice. Genome Res 14: 860–869.
[32]  Zhang W, Yi C, Bao W, Liu B, Cui J, et al. (2005) The transcribed 165-bp CentO satellite is the major functional centromeric element in the wild rice species . Plant Physiol 139: 306–315.
[33]  Ventura M, Mudge JM, Palumbo V, Burn S, Blennow E, et al. (2003) Neocentromeres in 15q24–26 map to duplicons which flanked an ancestral centromere in 15q25. Genome Res 13: 2059–2068.
[34]  Lamb JC, Meyer JM, Birchler JA (2007) A hemicentric inversion in the maize line knobless Tama flint created two sites of centromeric elements and moved the kinetochore-forming region. Chromosoma 116: 237–247.
[35]  Alonso A, Mahmood R, Li S, Cheung F, Yoda K, et al. (2003) Genomic microarray analysis reveals distinct locations for the CENP-A binding domains in three human chromosome 13q32 neocentromeres. Hum Mol Genet 12: 2711–21.
[36]  Cardone MF, Alonso A, Pazienza M, Ventura M, Montemurro G, et al. (2006) Independent centromere formation in a capricious, gene-free domain of chromosome 13q21 in old world monkeys and pigs. Genome Biol 7: R91.
[37]  Sanyal K, Baum M, Carbon J (2004) Centromeric DNA sequences in the pathogenic yeast are all different and unique. Proc Natl Acad Sci U S A 101: 11374–11379.
[38]  Kelly JM, McRobert L, Baker DA (2006) Evidence on the chromosomal location of centromeric DNA in from etoposide-mediated topoisomerase-II cleavage. Proc Natl Acad Sci U S A 103: 6706–6711.
[39]  Obado SO, Bot C, Nilsson D, Andersson B, Kelly JM (2007) Repetitive DNA is associated with centromeric domains in but not . Genome Biol 8: R37.
[40]  Schwartz BE, Ahmad K (2005) Transcriptional activation triggers deposition and removal of the histone variant H3.3. Genes Dev 19: 804–814.
[41]  Chlebowicz-Sledziewska E, Sledziewski AZ (1985) Construction of multicopy yeast plasmids with regulated centromere function. Gene 39: 25–31.
[42]  Dalal Y, Wang H, Lindsay S, Henikoff S (2007) Tetrameric structure of centromeric nucleosomes in interphase Drosophila cells. PLoS Biol 5: e218. doi:10.1371/journal.pbio.0050218.
[43]  Moreno-Moreno O, Torras-Llort M, Azorin F (2006) Proteolysis restricts localization of CID, the centromere-specific histone H3 variant of Drosophila, to centromeres. Nucleic Acids Res 34: 6247–6255.
[44]  Fukagawa T, Nogami M, Yoshikawa M, Ikeno M, Okazaki T, et al. (2004) Dicer is essential for formation of the heterochromatin structure in vertebrate cells. Nat Cell Biol 6: 784–791.
[45]  May BP, Lippman ZB, Fang Y, Spector DL, Martienssen RA (2005) Differential regulation of strand-specific transcripts from Arabidopsis centromeric satellite repeats. PLoS Genet 1: e79. doi:10.1371/journal.pgen.0010079.
[46]  Lee HR, Neumann P, Macas J, Jiang J (2006) Transcription and evolutionary dynamics of the centromeric satellite repeat CentO in rice. Mol Biol Evol 23: 2505–2520.
[47]  Irvine DV, Amor DJ, Perry J, Sirvent N, Pedeutour F, et al. (2004) Chromosome size and origin as determinants of the level of CENP-A incorporation into human centromeres. Chromosome Res 12: 805–815.
[48]  Ma J, Bennetzen JL (2006) Recombination, rearrangement, reshuffling, and divergence in a centromeric region of rice. Proc Natl Acad Sci U S A 103: 383–388.
[49]  Vogt P (1990) Potential genetic functions of tandem repeated DNA sequence blocks in the human genome are based on a highly conserved “chromatin folding code.”. Hum Genet 84: 301–336.
[50]  Dawe RK, Hiatt EN (2004) Plant neocentromeres: fast, focused, and driven. Chromosome Res 12: 655–669.
[51]  Dalal Y, Furuyama T, Vermaak D, Henikoff S (2007) Structure, dynamics, and evolution of centromeric nucleosomes. Proc Natl Acad Sci U S A 104: 15974–15981.
[52]  Bloom K (1993) The centromere frontier: Kinetochore components, microtubule-based motility, and the CEN-value paradox. Cell 73: 621–624.
[53]  Lee HR, Zhang W, Langdon T, Jin W, Yan H, et al. (2005) Chromatin immunoprecipitation cloning reveals rapid evolutionary patterns of centromeric DNA in Oryza species. Proc Natl Acad Sci U S A 102: 11793–11798.
[54]  Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, et al. (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437: 376–380.
[55]  Nobuta K, Venu RC, Lu C, Belo A, Vemaraju K, et al. (2007) An expression atlas of rice mRNAs and small RNAs. Nat Biotechnol 25: 473–477.

Full-Text

comments powered by Disqus