[1] | Amor DJ, Kalitsis P, Sumer H, Choo KH (2004) Building the centromere: From foundation proteins to 3D organization. Trends Cell Biol 14: 359–368.
|
[2] | Malik HS, Henikoff S (2003) Phylogenomics of the nucleosome. Nat Struct Biol 10: 882–891.
|
[3] | Tomonaga T, Matsushita K, Yamaguchi S, Oohashi T, Shimada H, et al. (2003) Overexpression and mistargeting of centromere protein-A in human primary colorectal cancer. Cancer Res 63: 3511–3516.
|
[4] | Ahmad K, Henikoff S (2002) Histone H3 variants specify modes of chromatin assembly. Proc Natl Acad Sci U S A 99(Suppl 4): 16477–16484.
|
[5] | Heun P, Erhardt S, Blower MD, Weiss S, Skora AD, et al. (2006) Mislocalization of the Drosophila centromere-specific histone CID promotes formation of functional ectopic kinetochores. Dev Cell 10: 303–315.
|
[6] | Moreno-Moreno O, Torras-Llort M, Azorin F (2006) Proteolysis restricts localization of CID, the centromere-specific histone H3 variant of Drosophila, to centromeres. Nucleic Acids Res 34: 6247–6255.
|
[7] | Collins KA, Furuyama S, Biggins S (2004) Proteolysis contributes to the exclusive centromere localization of the yeast Cse4/CENP-A histone H3 variant. Curr Biol 14: 1968–1972.
|
[8] | Pidoux AL, Allshire RC (2004) Kinetochore and heterochromatin domains of the fission yeast centromere. Chromosome Res 12: 521–534.
|
[9] | Jansen LE, Black BE, Foltz DR, Cleveland DW (2007) Propagation of centromeric chromatin requires exit from mitosis. J Cell Biol 176: 795–805.
|
[10] | Shelby RD, Monier K, Sullivan KF (2000) Chromatin assembly at kinetochores is uncoupled from DNA replication. J Cell Biol 151: 1113–1118.
|
[11] | Ahmad K, Henikoff S (2001) Centromeres are specialized replication domains in heterochromatin. J Cell Biol 153: 101–110.
|
[12] | Schuh M, Lehner CF, Heidmann S (2007) Incorporation of Drosophila CID/CENP-A and CENP-C into centromeres during early embryonic anaphase. Curr Biol 17: 237–243.
|
[13] | Palmer DK, O'Day K, Wener MH, Andrews BS, Margolis RL (1987) A 17-kD centromere protein (CENP-A) copurifies with nucleosome core particles and with histones. J Cell Biol 104: 805–815.
|
[14] | Palmer DK, O'Day K, Trong HL, Charbonneau H, Margolis RL (1991) Purification of the centromere-specific protein CENP-A and demonstration that it is a distinctive histone. Proc Natl Acad Sci U S A 88: 3734–3738.
|
[15] | Sullivan KF, Hechenberger M, Masri K (1994) Human CENP-A contains a histone H3 related histone fold that is required for targeting to the centromere. J Cell Biol 127: 581–592.
|
[16] | Yoda K, Ando S, Morishita S, Houmura K, Hashimoto K, et al. (2000) Human centromere protein A (CENP-A) can replace histone 3 in nucleosome reconstitution in vitro. Proc Natl Acad Sci U S A 97: 7266–7271.
|
[17] | Furuyama T, Dalal Y, Henikoff S (2006) Chaperone-mediated assembly of centromeric chromatin in vitro. Proc Natl Acad Sci U S A 103: 6172–6177.
|
[18] | Bloom KS, Amaya E, Carbon J, Clarke L, Hill A, et al. (1984) Chromatin conformation of yeast centromeres. J Cell Biol 99: 1559–1568.
|
[19] | Polizzi C, Clarke L (1991) The chromatin structure of centromeres from fission yeast: Differentiation of the central core that correlates with function. J Cell Biol 112: 191–201.
|
[20] | Takahashi K, Murakami S, Chikashige Y, Funabiki H, Niwa O, et al. (1992) A low copy number central sequence with strict symmetry and unusual chromatin structure in fission yeast centromere. Mol Biol Cell 3: 819–835.
|
[21] | Thomas JO, Kornberg RD (1975) An octamer of histones in chromatin and free in solution. Proc Natl Acad Sci U S A 72: 2626–2630.
|
[22] | Kornberg RD, Thomas JO (1974) Chromatin structure; oligomers of the histones. Science 184: 865–868.
|
[23] | Blower MD, Sullivan BA, Karpen GH (2002) Conserved organization of centromeric chromatin in flies and humans. Developmental Cell 2: 319–330.
|
[24] | Westermann S, Cheeseman IM, Anderson S, Yates JR, Drubin DG, et al. (2003) Architecture of the budding yeast kinetochore reveals a conserved molecular core. J Cell Biol 163: 215–222.
|
[25] | Henikoff S, Ahmad K, Platero JS, van Steensel B (2000) Heterochromatic deposition of centromeric histone H3-like proteins. Proc Natl Acad Sci U S A 97: 716–721.
|
[26] | Stein A, Page D (1980) Core histone associations in solutions of high salt. An osmotic pressure study. J Biol Chem 255: 3629–3637.
|
[27] | Polizzi C, Clarke L (1991) The chromatin structure of centromeres from fission yeast: Differentiation of the central core that correlates with function. J Cell Biol 112: 191–201.
|
[28] | Sun X, Le HD, Wahlstrom JM, Karpen GH (2003) Sequence analysis of a functional Drosophila centromere. Genome Res 13: 182–194.
|
[29] | Hewish DR, Burgoyne LA (1973) Chromatin sub-structure. The digestion of chromatin DNA at regularly spaced sites by a nuclear deoxyribonuclease. Biochem Biophys Res Commun 52: 504–510.
|
[30] | Noll M (1974) Subunit structure of chromatin. Nature 251: 249–251.
|
[31] | Annunziato AT (2005) Split decision: What happens to nucleosomes during DNA replication? J Biol Chem 280: 12065–12068.
|
[32] | Olins AL, Senior MB, Olins DE (1976) Ultrastructural features of chromatin nu bodies. J Cell Biol 68: 787–793.
|
[33] | Woodcock CL, Frado LL, Rattner JB (1984) The higher-order structure of chromatin: Evidence for a helical ribbon arrangement. J Cell Biol 99: 42–52.
|
[34] | Lohr D, Bash R, Wang H, Yodh J, Lindsay S (2007) Using atomic force microscopy to study chromatin structure and nucleosome remodeling. Methods 41: 333–341.
|
[35] | Tomschik M, Karymov MA, Zlatanova J, Leuba SH (2001) The archaeal histone-fold protein HMf organizes DNA into bona fide chromatin fibers. Structure 9: 1201–1211.
|
[36] | Tagami H, Ray-Gallet D, Almouzni G, Nakatani Y (2004) Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell 116: 51–61.
|
[37] | Weintraub H, Worcel A, Alberts B (1976) A model for chromatin based upon two symmetrically paired half-nucleosomes. Cell 9: 409–417.
|
[38] | Henikoff S, Furuyama T, Ahmad A (2004) Histone variants, nucleosome assembly and epigenetic inheritance. Trends Genet 20: 320–326.
|
[39] | McEwen BF, Hsieh CE, Mattheyses AL, Rieder CL (1998) A new look at kinetochore structure in vertebrate somatic cells using high- pressure freezing and freeze substitution. Chromosoma 107: 366–375.
|
[40] | Maiato H, Hergert PJ, Moutinho-Pereira S, Dong Y, Vandenbeldt KJ, et al. (2006) The ultrastructure of the kinetochore and kinetochore fiber in Drosophila somatic cells. Chromosoma 115: 469–480.
|
[41] | Talbert PB, Masuelli R, Tyagi AP, Comai L, Henikoff S (2002) Centromeric localization and adaptive evolution of an Arabidopsis histone H3 variant. Plant Cell 14: 1053–1066.
|
[42] | Maddox PS, Hyndman F, Monen J, Oegema K, Desai A (2007) Functional genomics identifies a Myb domain-containing protein family required for assembly of CENP-A chromatin. J Cell Biol 176: 757–763.
|
[43] | Li B, Carey M, Workman JL (2007) The role of chromatin during transcription. Cell 128: 707–719.
|
[44] | Dion MF, Kaplan T, Kim M, Buratowski S, Friedman N, et al. (2007) Dynamics of replication-independent histone turnover in budding yeast. Science 315: 1405–1408.
|
[45] | Henikoff S, Ahmad K (2005) Assembly of variant histones into chromatin. Ann Rev Cell Dev Biol 21: 133–153.
|
[46] | Wieland G, Orthaus S, Ohndorf S, Diekmann S, Hemmerich P (2004) Functional Complementation of Human Centromere Protein A (CENP-A) by Cse4p from . Mol Cell Biol 24: 6620–6630.
|
[47] | Mellone BG, Allshire RC (2003) Stretching it: Putting the CEN(P-A) in centromere. Curr Opin Genet Dev 13: 191–198.
|
[48] | Henikoff S, Dalal Y (2005) Centromeric chromatin: What makes it unique? Curr Opin Genet Dev 15: 177–184.
|
[49] | Yan H, Jin W, Nagaki K, Tian S, Ouyang S, et al. (2005) Transcription and histone modifications in the recombination-free region spanning a rice centromere. Plant Cell 17: 3227–3238.
|
[50] | Sullivan BA, Karpen GH (2004) Centromeric chromatin exhibits a histone modification pattern that is distinct from both euchromatin and heterochromatin. Nat Struct Mol Biol 11: 1076–1083.
|
[51] | Nakashima H, Nakano M, Ohnishi R, Hiraoka Y, Kaneda Y, et al. (2005) Assembly of additional heterochromatin distinct from centromere-kinetochore chromatin is required for de novo formation of human artificial chromosome. J Cell Sci 118: 5885–5898.
|
[52] | Echalier G (1997) Drosophila cells in culture. New York: Academic Press. 702 p.
|
[53] | Blower MD, Karpen GH (2001) The role of Drosophila CID in kinetochore formation, cell-cycle progression and heterochromatin interactions. Nat Cell Biol 3: 730–739.
|
[54] | Mito Y, Henikoff J, Henikoff S (2005) Genome-scale profiling of histone H3.3 replacement patterns. Nat Genet 37: 1090–1097.
|
[55] | Wang H, Bash R, Yodh JG, Hager GL, Lohr D, et al. (2002) Glutaraldehyde modified mica: a new surface for atomic force microscopy of chromatin. Biophys J 83: 3619–3625.
|