[1] | Yerkes RM, Dodson JD (1908) The relation of strength of stimulus to rapidity of habit-formation. Journal of Comparative Neurology and Psychology 18: 459–482. doi: 10.1002/cne.920180503
|
[2] | Cools R, D'Esposito M (2011) Inverted-U-shaped dopamine actions on human working memory and cognitive control. Biol Psychiatry 69: e113–125. doi: 10.1016/j.biopsych.2011.03.028
|
[3] | Vijayraghavan S, Wang M, Birnbaum SG, Williams GV, Arnsten AF (2007) Inverted-U dopamine D1 receptor actions on prefrontal neurons engaged in working memory. Nat Neurosci 10: 376–384. doi: 10.1038/nn1846
|
[4] | Bentley P, Driver J, Dolan RJ (2011) Cholinergic modulation of cognition: insights from human pharmacological functional neuroimaging. Prog Neurobiol 94: 360–388. doi: 10.1016/j.pneurobio.2011.06.002
|
[5] | Aston-Jones G, Cohen JD (2005) An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu Rev Neurosci 28: 403–450. doi: 10.1146/annurev.neuro.28.061604.135709
|
[6] | Luksys G, Gerstner W, Sandi C (2009) Stress, genotype and norepinephrine in the prediction of mouse behavior using reinforcement learning. Nat Neurosci 12: 1180–1186. doi: 10.1038/nn.2374
|
[7] | Linkenkaer-Hansen K, Nikulin VV, Palva S, Ilmoniemi RJ, Palva JM (2004) Prestimulus oscillations enhance psychophysical performance in humans. J Neurosci 24: 10186–10190. doi: 10.1523/jneurosci.2584-04.2004
|
[8] | Rajagovindan R, Ding M (2011) From prestimulus alpha oscillation to visual-evoked response: an inverted-U function and its attentional modulation. J Cogn Neurosci 23: 1379–1394. doi: 10.1162/jocn.2010.21478
|
[9] | Zhang Y, Ding M (2010) Detection of a weak somatosensory stimulus: role of the prestimulus mu rhythm and its top-down modulation. J Cogn Neurosci 22: 307–322. doi: 10.1162/jocn.2009.21247
|
[10] | van Dijk H, Schoffelen JM, Oostenveld R, Jensen O (2008) Prestimulus oscillatory activity in the alpha band predicts visual discrimination ability. J Neurosci 28: 1816–1823. doi: 10.1523/jneurosci.1853-07.2008
|
[11] | Hesselmann G, Kell CA, Eger E, Kleinschmidt A (2008) Spontaneous local variations in ongoing neural activity bias perceptual decisions. Proc Natl Acad Sci U S A 105: 10984–10989. doi: 10.1073/pnas.0712043105
|
[12] | Hesselmann G, Kell CA, Kleinschmidt A (2008) Ongoing activity fluctuations in hMT+ bias the perception of coherent visual motion. J Neurosci 28: 14481–14485. doi: 10.1523/jneurosci.4398-08.2008
|
[13] | Boly M, Balteau E, Schnakers C, Degueldre C, Moonen G, et al. (2007) Baseline brain activity fluctuations predict somatosensory perception in humans. Proc Natl Acad Sci U S A 104: 12187–12192. doi: 10.1073/pnas.0611404104
|
[14] | Fox MD, Snyder AZ, Vincent JL, Raichle ME (2007) Intrinsic fluctuations within cortical systems account for intertrial variability in human behavior. Neuron 56: 171–184. doi: 10.1016/j.neuron.2007.08.023
|
[15] | Badre D, Doll BB, Long NM, Frank MJ (2012) Rostrolateral prefrontal cortex and individual differences in uncertainty-driven exploration. Neuron 73: 595–607. doi: 10.1016/j.neuron.2011.12.025
|
[16] | Hoogenboom N, Schoffelen JM, Oostenveld R, Fries P (2010) Visually induced gamma-band activity predicts speed of change detection in humans. Neuroimage 51: 1162–1167. doi: 10.1016/j.neuroimage.2010.03.041
|
[17] | Hunt LT, Kolling N, Soltani A, Woolrich MW, Rushworth MF, et al. (2012) Mechanisms underlying cortical activity during value-guided choice. Nat Neurosci 15: 470–473, 470-476, S471-473. doi: 10.1038/nn.3017
|
[18] | Womelsdorf T, Fries P, Mitra PP, Desimone R (2006) Gamma-band synchronization in visual cortex predicts speed of change detection. Nature 439: 733–736. doi: 10.1038/nature04258
|
[19] | Liebe S, Hoerzer GM, Logothetis NK, Rainer G (2012) Theta coupling between V4 and prefrontal cortex predicts visual short-term memory performance. Nat Neurosci 15: 456–452, 456-462, S451-452. doi: 10.1038/nn.3038
|
[20] | de Lafuente V, Romo R (2005) Neuronal correlates of subjective sensory experience. Nat Neurosci 8: 1698–1703. doi: 10.1038/nn1587
|
[21] | Osborne LC, Lisberger SG, Bialek W (2005) A sensory source for motor variation. Nature 437: 412–416. doi: 10.1038/nature03961
|
[22] | Britten KH, Newsome WT, Shadlen MN, Celebrini S, Movshon JA (1996) A relationship between behavioral choice and the visual responses of neurons in macaque MT. Vis Neurosci 13: 87–100. doi: 10.1017/s095252380000715x
|
[23] | Churchland MM, Yu BM, Cunningham JP, Sugrue LP, Cohen MR, et al. (2010) Stimulus onset quenches neural variability: a widespread cortical phenomenon. Nat Neurosci 13: 369–378. doi: 10.1038/nn.2501
|
[24] | Werner G, Mountcastle VB (1963) The Variability of Central Neural Activity in a Sensory System, and Its Implications for the Central Reflection of Sensory Events. J Neurophysiol 26: 958–977.
|
[25] | Chang MH, Armstrong KM, Moore T (2012) Dissociation of response variability from firing rate effects in frontal eye field neurons during visual stimulation, working memory, and attention. J Neurosci 32: 2204–2216. doi: 10.1523/jneurosci.2967-11.2012
|
[26] | Finn IM, Priebe NJ, Ferster D (2007) The emergence of contrast-invariant orientation tuning in simple cells of cat visual cortex. Neuron 54: 137–152. doi: 10.1016/j.neuron.2007.02.029
|
[27] | Dinstein I, Heeger DJ, Lorenzi L, Minshew NJ, Malach R, et al. (2012) Unreliable evoked responses in autism. Neuron 75: 981–991. doi: 10.1016/j.neuron.2012.07.026
|
[28] | Steinmetz NA, Moore T (2010) Changes in the response rate and response variability of area V4 neurons during the preparation of saccadic eye movements. J Neurophysiol 103: 1171–1178. doi: 10.1152/jn.00689.2009
|
[29] | Churchland MM, Yu BM, Ryu SI, Santhanam G, Shenoy KV (2006) Neural variability in premotor cortex provides a signature of motor preparation. J Neurosci 26: 3697–3712. doi: 10.1523/jneurosci.3762-05.2006
|
[30] | He BJ (2013) Spontaneous and task-evoked brain activity negatively interact. J Neurosci 33: 4672–4682. doi: 10.1523/jneurosci.2922-12.2013
|
[31] | He BJ, Zempel JM, Snyder AZ, Raichle ME (2010) The temporal structures and functional significance of scale-free brain activity. Neuron 66: 353–369. doi: 10.1016/j.neuron.2010.04.020
|
[32] | Vanhatalo S, Palva JM, Holmes MD, Miller JW, Voipio J, et al. (2004) Infraslow oscillations modulate excitability and interictal epileptic activity in the human cortex during sleep. Proc Natl Acad Sci U S A 101: 5053–5057. doi: 10.1073/pnas.0305375101
|
[33] | Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8: 700–711. doi: 10.1038/nrn2201
|
[34] | van Vreeswijk C, Sompolinsky H (1996) Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science 274: 1724–1726. doi: 10.1126/science.274.5293.1724
|
[35] | Glimcher PW (2005) Indeterminacy in brain and behavior. Annu Rev Psychol 56: 25–56. doi: 10.1146/annurev.psych.55.090902.141429
|
[36] | Faisal AA, Selen LP, Wolpert DM (2008) Noise in the nervous system. Nat Rev Neurosci 9: 292–303. doi: 10.1038/nrn2258
|
[37] | Traynelis SF, Jaramillo F (1998) Getting the most out of noise in the central nervous system. Trends Neurosci 21: 137–145. doi: 10.1016/s0166-2236(98)01238-7
|
[38] | Mendez-Balbuena I, Manjarrez E, Schulte-Monting J, Huethe F, Tapia JA, et al. (2012) Improved Sensorimotor Performance via Stochastic Resonance. J Neurosci 32: 12612–12618. doi: 10.1523/jneurosci.0680-12.2012
|
[39] | Deco G, Rolls ET, Romo R (2009) Stochastic dynamics as a principle of brain function. Prog Neurobiol 88: 1–16. doi: 10.1016/j.pneurobio.2009.01.006
|
[40] | He BJ, Snyder AZ, Zempel JM, Smyth MD, Raichle ME (2008) Electrophysiological correlates of the brain's intrinsic large-scale functional architecture. Proc Natl Acad Sci U S A 105: 16039–16044. doi: 10.1073/pnas.0807010105
|
[41] | Mitzdorf U (1985) Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. Physiol Rev 65: 37–100.
|
[42] | White B, Abbott LF, Fiser J (2012) Suppression of cortical neural variability is stimulus- and state-dependent. J Neurophysiol 108 ((9)): 2383–92. doi: 10.1152/jn.00723.2011
|
[43] | Briggman KL, Abarbanel HD, Kristan WB Jr (2005) Optical imaging of neuronal populations during decision-making. Science 307: 896–901. doi: 10.1126/science.1103736
|
[44] | Fukushima M, Saunders RC, Leopold DA, Mishkin M, Averbeck BB (2012) Spontaneous high-gamma band activity reflects functional organization of auditory cortex in the awake macaque. Neuron 74: 899–910. doi: 10.1016/j.neuron.2012.04.014
|
[45] | Bressler SL, Menon V (2010) Large-scale brain networks in cognition: emerging methods and principles. Trends Cogn Sci 14: 277–290. doi: 10.1016/j.tics.2010.04.004
|
[46] | Goldman-Rakic PS (1988) Topography of cognition: parallel distributed networks in primate association cortex. Annu Rev Neurosci 11: 137–156. doi: 10.1146/annurev.ne.11.030188.001033
|
[47] | Gonzalez-Castillo J, Saad ZS, Handwerker DA, Inati SJ, Brenowitz N, et al. (2012) Whole-brain, time-locked activation with simple tasks revealed using massive averaging and model-free analysis. Proc Natl Acad Sci U S A 109: 5487–5492. doi: 10.1073/pnas.1121049109
|
[48] | McIntosh AR, Kovacevic N, Lippe S, Garrett D, Grady C, et al. (2010) The development of a noisy brain. Arch Ital Biol 148: 323–337.
|
[49] | Garrett DD, Kovacevic N, McIntosh AR, Grady CL (2011) The importance of being variable. J Neurosci 31: 4496–4503. doi: 10.1523/jneurosci.5641-10.2011
|
[50] | McIntosh AR, Kovacevic N, Itier RJ (2008) Increased brain signal variability accompanies lower behavioral variability in development. PLoS Comput Biol 4: e1000106. doi: 10.1371/journal.pcbi.1000106
|
[51] | Garrett DD, Kovacevic N, McIntosh AR, Grady CL (2010) Blood oxygen level-dependent signal variability is more than just noise. J Neurosci 30: 4914–4921. doi: 10.1523/jneurosci.5166-09.2010
|
[52] | Winterer G, Ziller M, Dorn H, Frick K, Mulert C, et al. (2000) Schizophrenia: reduced signal-to-noise ratio and impaired phase-locking during information processing. Clin Neurophysiol 111: 837–849. doi: 10.1016/s1388-2457(99)00322-3
|
[53] | Wong KF, Wang XJ (2006) A recurrent network mechanism of time integration in perceptual decisions. J Neurosci 26: 1314–1328. doi: 10.1523/jneurosci.3733-05.2006
|
[54] | Rigotti M, Ben Dayan Rubin D, Morrison SE, Salzman CD, Fusi S (2010) Attractor concretion as a mechanism for the formation of context representations. Neuroimage 52: 833–847. doi: 10.1016/j.neuroimage.2010.01.047
|
[55] | Deco G, Hugues E (2012) Neural network mechanisms underlying stimulus driven variability reduction. PLoS Comput Biol 8: e1002395. doi: 10.1371/journal.pcbi.1002395
|
[56] | Buonomano DV, Maass W (2009) State-dependent computations: spatiotemporal processing in cortical networks. Nat Rev Neurosci 10: 113–125. doi: 10.1038/nrn2558
|
[57] | Rabinovich M, Huerta R, Laurent G (2008) Neuroscience. Transient dynamics for neural processing. Science 321: 48–50. doi: 10.1126/science.1155564
|
[58] | Bick C, Rabinovich MI (2009) Dynamical origin of the effective storage capacity in the brain's working memory. Phys Rev Lett 103: 218101. doi: 10.1103/physrevlett.103.218101
|
[59] | Mazor O, Laurent G (2005) Transient dynamics versus fixed points in odor representations by locust antennal lobe projection neurons. Neuron 48: 661–673. doi: 10.1016/j.neuron.2005.09.032
|
[60] | Shenoy KV, Kaufman MT, Sahani M, Churchland MM (2011) A dynamical systems view of motor preparation: implications for neural prosthetic system design. Prog Brain Res 192: 33–58. doi: 10.1016/b978-0-444-53355-5.00003-8
|
[61] | Fiser J, Berkes P, Orban G, Lengyel M (2010) Statistically optimal perception and learning: from behavior to neural representations. Trends Cogn Sci 14: 119–130. doi: 10.1016/j.tics.2010.01.003
|
[62] | Wiesenfeld K, Moss F (1995) Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDs. Nature 373: 33–36. doi: 10.1038/373033a0
|
[63] | Collins JJ, Chow CC, Imhoff TT (1995) Stochastic resonance without tuning. Nature 376: 236–238. doi: 10.1038/376236a0
|
[64] | Nikulin VV, Linkenkaer-Hansen K, Nolte G, Lemm S, Muller KR, et al. (2007) A novel mechanism for evoked responses in the human brain. Eur J Neurosci 25: 3146–3154. doi: 10.1111/j.1460-9568.2007.05553.x
|
[65] | Mazaheri A, Jensen O (2008) Asymmetric amplitude modulations of brain oscillations generate slow evoked responses. J Neurosci 28: 7781–7787. doi: 10.1523/jneurosci.1631-08.2008
|
[66] | Llinas R (2001) I of the Vortex: From Neurons to Self. Cambridge, MA: MIT Press.
|
[67] | Honey CJ, Kotter R, Breakspear M, Sporns O (2007) Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proc Natl Acad Sci U S A 104: 10240–10245. doi: 10.1073/pnas.0701519104
|
[68] | Deco G, Jirsa VK (2012) Ongoing cortical activity at rest: criticality, multistability, and ghost attractors. J Neurosci 32: 3366–3375. doi: 10.1523/jneurosci.2523-11.2012
|
[69] | Bressler SL, Kelso JA (2001) Cortical coordination dynamics and cognition. Trends Cogn Sci 5: 26–36. doi: 10.1016/s1364-6613(00)01564-3
|
[70] | Talairach J, Tournoux P (1988) Co-Planar Stereotaxic Atlas of the Human Brain. Stuttgart - New York: Georg Thieme Verlag.
|
[71] | Jenkins GM, Watts DG (1998) Spectral analysis and its applications. Boca Raton, Florida: Emerson-Adams Press.
|
[72] | Vincent JL, Patel GH, Fox MD, Snyder AZ, Baker JT, et al. (2007) Intrinsic functional architecture in the anaesthetized monkey brain. Nature 447: 83–86. doi: 10.1038/nature05758
|
[73] | Van Dijk KR, Hedden T, Venkataraman A, Evans KC, Lazar SW, et al. (2010) Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization. J Neurophysiol 103: 297–321. doi: 10.1152/jn.00783.2009
|
[74] | Mandelbrot BB, Van Ness JW (1968) Fractional Brownian motions, fractional noises and applications. SIAM Review 10: 422–437. doi: 10.1137/1010093
|
[75] | Helgason H, V P, Abry P (2010) Fast and Exact Synthesis of Stationary Multivariate Gaussian Time Series Using Circulant Embedding. Signal Processing In Press 91: 1123–1133. doi: 10.1016/j.sigpro.2010.10.014
|