全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

On the Rate of Convergence of Some New Modified Iterative Schemes

DOI: 10.4236/ajcm.2013.34037, PP. 270-290

Keywords: Metric Space, New Modified Ishikawa, New Modified Agarwal et al., New Modified SP, New Modified Noor

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this article, following Bizare and Amriteimoori [1] and B. Parsad and R. Sahni [2], we modify Ishikawa, Agarwal et al., Noor, SP iterative schemes and compare the rate of convergence of Ishikawa, Agarwal et al., Noor, SP and new modified Ishikawa, Agarwal et al., Noor, SP iterative schemes not only for particular fixed value of an,bn,rn but also for varying the value of an,bn,rn. With the help of two numerical examples, we compare the converging step.

References

[1]  J. Biazar and A. Amirteimoori, “An Improvement to the Fixed Point Iterative Method,” Applied Mathematics and Computation, Vol. 182, No. 1, 2006, pp. 567-571.
http://dx.doi.org/10.1016/j.amc.2006.04.019
[2]  B. Prasad and R. Sahni, “Convergence of Some General Iterative Schemes,” International Journal of Mathematical Analysis, Vol. 5, No. 25, 2011, pp. 1237-1242.
[3]  S. Ishikawa, “Fixed Points by a New Iteration Method,” Proceedings of the American Mathematical Society, Vol. 44, No. 1, 1974, pp. 147-150.
http://dx.doi.org/10.1090/S0002-9939-1974-0336469-5
[4]  R. P. Agarwal, D. O’Regan and D. R. Sahu, “Iterative Construction of Fixed Points of Nearly Asymptotically Non-Expansive Mappings,” Journal of Nonlinear and Convex Analysis, Vol. 8, No. 1, 2007, pp. 61-79.
[5]  M. A. Noor, “New Approximation Schemes for General Variational Inequalities,” Journal of Mathematical Analysis and Applications, Vol. 251, No. 1, 2000, pp. 217-229.
http://dx.doi.org/10.1006/jmaa.2000.7042
[6]  W. Phuengrattana and S. Suantai, “On the Rate of Convergence of Mann, Ishikawa, Noor and SP Iterations for Continuous Functions on an Arbitrary Interval,” Journal of Computational and Applied Mathematics, Vol. 235, No. 9, 2011, pp. 3006-3014.
http://dx.doi.org/10.1016/j.cam.2010.12.022
[7]  E. Babolian and J. Biazar, “On the Order of Convergence of Adomian Method,” Applied Mathematics and Computation, Vol. 130, No. 2-3, 2002, pp. 383-387.
http://dx.doi.org/10.1016/S0096-3003(01)00103-5

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133