All Title Author
Keywords Abstract


Controlling Unstable Discrete Chaos and Hyperchaos Systems

DOI: 10.4236/am.2013.411A2001, PP. 1-6

Keywords: 2-Dimension Discrete Fold System, 3-Dimension Discrete Hyperchaotic System, Lyapunov Stability Theory, Controlling Chaos

Full-Text   Cite this paper   Add to My Lib

Abstract:

A method is introduced to stabilize unstable discrete systems, which does not require any adjustable control parameters of the system. 2-dimension discrete Fold system and 3-dimension discrete hyperchaotic system are stabilized to fixed points respectively. Numerical simulations are then provided to show the effectiveness and feasibility of the proposed chaos and hyperchaos controlling scheme.

References

[1]  E. Ott, C. Grebogi and J. A. York, “Controlling Chaos,” Physical Review Letters, Vol. 64, No. 11, 1990, pp. 11961199.
[2]  D. Liu, L. Liu and Y. Yang, “H∞ Control of DiscreteTime Singularly Perturbed Systems via Static Output Feedback,” Abstract and Applied Analysis, Vol. 2013, 2013, Article ID: 528695.
[3]  Z. Wang, H. T. Zhao and X. Y. Kong, “Delayed Feedback Control and Bifurcation Analysis of an Autonomy System,” Abstract and Applied Analysis, Vol. 2013, 2013, Article ID: 167065.
[4]  G. R. Chen and J. H. LU, “Dynamic Analysis, Control and Synchronization of Lorenz System,” Science Publishing Company, Beijing, 2003.
[5]  B. Peng, V. Petro and K. Showalter, “Controlling Chemical Chaos,” The Journal of Physical Chemistry, Vol. 95, No. 13, 1991, pp. 4957-4961.
http://dx.doi.org/10.1021/j100166a013
[6]  H. Salarieh and A. Alasty, “Control of Stochastic Chaos Using Sliding Mode Method,” Journal of Computational and Applied Mathematics, Vol. 225, No. 1, 2009, pp. 135-145.
http://dx.doi.org/10.1016/j.cam.2008.07.032
[7]  K. Pyragas, “Continuous Control of Chaos by Self-Controlling Systems,” Physical Letter A, Vol. 170, No. 6, 1992, pp. 421-428.
http://dx.doi.org/10.1016/0375-9601(92)90745-8
[8]  E. H. Abed, H. O. Wang and R. C. Chen, “Stabilization of Period Doubling Bifurcations and Implications for Control of Chaos,” Physica D, Vol. 70, No. 1-2, 1994, pp. 154-164.
http://dx.doi.org/10.1016/0167-2789(94)90062-0
[9]  K. A. Mirus and J. C. Sprott, “Controlling Chaos in Lowand High-Dimensional Systems with Periodic Parametric Perturbations,” Physical Review E, Vol. 59, No. 5, 1999, pp. 5313-5324.
http://dx.doi.org/10.1103/PhysRevE.59.5313
[10]  X. Li, Y. Chen and Z. B. Li, “Function Projective Synchronization of Discrete-Time Chaotic Systems,” Zeitschrift für Naturforschung Section A—A Journal of Physical Scienses, Vol. 63, No. 1-2, 2008, pp. 7-14.
[11]  L. Yang, Z. R. Liu and J. M. Mao, “Controlling Hyperchaos,” Physical Review Letters, Vol. 84, No. 1, 2000, pp. 67-70. http://dx.doi.org/10.1103/PhysRevLett.84.67
[12]  S. L. Bu, S. Q. Wang and H. Q. Ye, “Stabilizing Unstable Discrete Systems,” Physical Review E, Vol. 64, 2001, Article ID: 046209.
[13]  X. Li and Y. Chen, “Stabilizing of Two-Dimensional Discrete Lorenz Chaotic System and Three-Dimensional Discrete Rossler Hyperchaotic System,” Chinese Physics Letters, Vol. 26, No. 9, 2009, Article ID: 090503.
[14]  M. Itoh, T. Yang and L. O. Chua, “Conditions for Impulsive Synchronization of Chaotic and Hyperchaotic Systems,” International Journal of Bifurcation and Chaos, Vol. 11, No. 2, 2001, pp. 551-560.
http://dx.doi.org/10.1142/S0218127401002262
[15]  X. Y. Wang, “Chaos in Complex Nonlinear Systems,” Publishing House of Electronics Industry, Beijing, 2003.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

微信:OALib Journal