All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99


Relative Articles

Geochemical Soil Survey for the Exploration of Uranium ore Deposits, NE Vogelkop, Irian Jaya, Indonesia

Determination of specific activity of230Th in uranium ore samples

Determination of specific activity of 230Th in uranium ore samples

A Study of the Formation Process and Ore-Prospecting Indicators of the Sandstone Type Uranium Deposits in the Light of Uranium Series Isotopes

Solvent extraction studies on uranium using amine based extractants and recovery from low grade ore leach liquors

Characteristics of Oreforming Fluids of the Changpai Uranium Deposit in Guangdong Province

New discovery of uranium ore spot and prospecting discussion in north western Dayawan, Guangdong province.

Uranium in South America with Emphasis on the Brazilian Uranium Province (Summary) L'uranium en Amérique du Sud et plus particulièrement dans la province uranifère brésilienne (résumé)

Model of Inner and Outer Reductive Media Within Uranium Reservoir Sandstone of Sandstone-Type Uranium Deposits and Its Ore-Controlling Mechanism: Case Studies in Daying and Qianjiadian Uranium Deposits

Effects of iron-ore particles on propagule release, growth and photosynthetic performance of Sargassum vulgare C. Agardh (Phaeophyta, Fucales)


Release of Uranium by an Ore Treatment Unit at Caldas, MG, Brazil

DOI: 10.4236/jep.2013.46066, PP. 570-574

Keywords: Uranium, Ore Treatment Unit, Caldas, Radionuclide Monitoring

Full-Text   Cite this paper   Add to My Lib


This study aims to assess the behavior of the release of Unat (i.e. uranium isotopes in natural relative abundance) from the release of water treated by the Ore Treatment Unit (UTM) in Caldas, state of Minas Gerais, Brazil, during the years 1999 to 2009. During this period, the unit showed no industrial activity, except between 2004 and 2005, when UTM operated 400 tons of monazite in a process to obtain rare earths. Unat was analyzed by spectrophotometry once per week in the effluent waters at sampling point 014. Two fractions were considered for analysis: the soluble one (that passes through a 0.45 μm filter) and the particulate one (retained on a 0.45 μm filter). Statistical analyses were performed: the “Z” test and Pearson’s r2 correlation index. The values for the soluble fraction were consistently lower than those of the particulate fraction and no statistically significant correlation was observed between the soluble and particulate fractions. However, the particulate and the total fractions (the sum of soluble and particulate) strongly correlated.


[1]  H. M. Fernandes, L. H. S. Veiga, M. R. Franklin, V. C. S. Prado and J. F. Taddei, “Environmental Impact Assessment of Uranium Mining and Milling Facilities: A Study Case at the Pocos de Caldas Uranium Mining and Milling Site, Brazil,” Journal of Geochemical Exploration, Vol. 52, No. 1-2, 1994, pp. 161-173. doi:10.1016/0375-6742(94)00043-B
[2]  E. C. S. Amaral, “Modificacao da Exposicao à Radiacao Natural Devido a Atividades Agrícolas e Industriais Numa área de Radioatividade Natural Elevada No Brasil,” Ph.D. Thesis, Instituto de Biofísica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 1992, 130 p.
[3]  E. C. S. Amaral, J. M. Godoy, E. R. R. Rochedo, L. M. H. Vasconcellos and M. A. Pires do Rio, “The Environmental Impact of the Uranium Industry: Is the Waste Rock a Significant Contributor,” Radiation Protection Dosimetry, Vol. 22, No. 3, 1988, pp. 165-171.
[4]  E. C. S. Amaral, E. R. R. Rochedo, H. G. Paretzke and E. Penna Franca, “The Radiological Impact of the Agricultural Activities in an Area of High Natural Radioactivity,” Radiation Protection Dosimetry, Vol. 45, No. 1-4, 1993, pp. 289-292.
[5]  H. L. P. Azevedo, E. C. S. Amaral and J. M. Godoy, “Evaluation of the 226Ra Transport by River Sediments Surrounding the Brazilian Uranium Mining and Milling Facilities,” Environmental Pollution, Vol. 51, No. 4, 1988, pp. 259-268. doi:10.1016/0269-7491(88)90166-2
[6]  C. Barcellos, E. Amaral and E. Rochedo, “Radionuclide Transport by Pocos de Caldas Plateau Rivers, Brazil,” Environmental Technology, Vol. 11, No. 6, 1990, pp. 533-540.
[7]  E. C. S. Amaral, H. L. P. Azevedo and A. H. Mendonca, “Pre-Operational Environment Survey at the Uranium Mine and Mill Site, Pocos de Caldas, Minas Gerais, Brazil,” Science of the Total Environment, Vol. 42, No. 3, 1985, pp. 257-266. doi:10.1016/0048-9697(85)90061-0
[8]  National Commission for Nuclear Energy—CNEN, Standard CNEN-Ne-3.01, “Diretrizes Básicas de Radioprotecao,” 1988, 121 p.
[9]  National Commission for Nuclear Energy—CNEN, Standard CNEN-Nn-3.01, “Diretrizes Básicas de Protecao Radiológica,” 2005, 34 p.
[10]  H. M. Fernandes, M. R. Franklin, L. H. S. Veiga, P. Freitas and L. A. Gomiero, “Management of Uranium Mill Tailings: Geochemical Processes and Radiological Risk Assessment,” Journal of Environmental Radioactivity, Vol. 30, No. l, 1996, pp. 69-95. doi:10.1016/0265-931X(95)00032-6
[11]  H. M. Fernandes, “Subsídios ao Descomissionamento da Primeira Indústria de Mineracao e Beneficiamento de Uranio No Brasil. O caso do Complexo Mineiro Industrial de Pocos de Caldas—Niterói,” Ph.D. Thesis, Departamento de Geoquímica da Universidade Federal Fluminense, Niterói, 1997, 250 p.
[12]  S. B. Savvin, “Analytical Applications of Arsenazo III—II: Determination of Thorium, Uranium, Protactinium, Neptunium, Hafnium and Scandium,” Talanta, Vol. 11, No. 1, 1964, pp. 1-6. doi:10.1016/0039-9140(64)80003-5


comments powered by Disqus