All Title Author
Keywords Abstract


Modified Maximum Likelihood Estimation of the Spatial Resolution for the Elliptical Gamma Camera SPECT Imaging Using Binary Inhomogeneous Markov Random Fields Models

DOI: 10.4236/act.2013.22013, PP. 68-75

Keywords: Markov Random Fields, Inhomogeneous Models, Image Reconstructions, Single Photon Emission

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this work a complete approach for estimation of the spatial resolution for the gamma camera imaging based on the [1] is analyzed considering where the body distance is detected (close or far way). The organ of interest most of the times is not well defined, so in that case it is appropriate to use elliptical camera detection instead of circular. The image reconstruction is presented which allows spatially varying amounts of local smoothing. An inhomogeneous Markov random field (M.r.f.) model is described which allows spatially varying degrees of smoothing in the reconstructions and a re-parameterization is proposed which implicitly introduces a local correlation structure in the smoothing parameters using a modified maximum likelihood estimation (MLE) denoted as one step late (OSL) introduced by [2].

References

[1]  S. A. Larsson, “Gamma Camera Emission Tomography,” Acta Radiologica, No. S363, pp. 1-75.
[2]  P. J. Green, “On Use of the EM Algorithm for Penalized Likelihood Estimation,” Journal of the Royal Statistical Society, Series B, Vol. 52, 1990, pp. 443-452.
[3]  B. Chalmond, “An Iterative Gibbsian Technique for Simultaneous Structure Estimation and Reconstruction of M-Ary Images,” Pattern Recognition, Vol. 22, No. 6, 1989, pp. 747-761. doi:10.1016/0031-3203(89)90011-3
[4]  L. A. Shepp and Y. Vardi, “Maximum Likelihood Reconstruction in Positron Emission Tomography,” IEEE Transactions on Medical Imaging, Vol. 1, No. 2, 1982, pp. 113-122. doi:10.1109/TMI.1982.4307558
[5]  Y. Vardi, L. A. Shepp and L. Kauffman, “A Statistical Model for Positron Emission Tomography,” Journal of the American Statistical Association, Vol. 80, No. 389, 1985, pp. 8-37. doi:10.1080/01621459.1985.10477119
[6]  J. Besag, “Spatial Interaction and the Statistical Analysis of Lattice Systems,” Journal of the Royal Statistical Society, Series B, Vol. 36, 1974, pp. 192-236.
[7]  J. Besag, “Discussion of Paper by P. Switzer,” Bulletin of the International Statistical Institute, Series A, Vol. 332, 1986, pp. 323-342.
[8]  S. Geman and D. Geman, “Stochastic Relaxation, Gibbs Distribution and the Bayesian Restoration of Images,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 6, No. 6, 1984, pp. 721-741. doi:10.1109/TPAMI.1984.4767596
[9]  T. Hebert and R. Leahy, “A generalized EM Algorithm for 3D Bayesian Reconstruction from Poisson Data, Using Gibbs Priors,” IEEE Transactions on Medical Imaging, Vol. 8, No. 2, 1989, pp. 194-202. doi:10.1109/42.24868
[10]  G. R. Cross and A. K. Jain, “Markov Random Field Texture Models,” IEEE Transactions on PAMI, Vol. 5, No. 1, 1983, pp. 25-39. doi:10.1109/TPAMI.1983.4767341
[11]  R. G. Aykroyd, “Bayesian Estimation of Homogeneous and Inhomogeneous Gaussian Random Fields,” IEEE Transactions on PAMI, Vol. 20, No. 5, 1998, pp. 533-539. doi:10.1109/34.682182
[12]  D. M. Higdon, J. E. Bowsher, V. E. Johnson, T. G. Turkington, D. R. Gilland and R. J. Jaszczak, “Fully Bayesian Estimation of Gibbs Hyperparameters for Emission Computed Tomography Data,” IEEE Transactions on Medical Imaging, Vol. 16, No. 5, 1997, pp. 516-526. doi:10.1109/42.640741
[13]  I. S. Weir, “Fully Bayesian SPECT Reconstructions,” Journal of the American Statistical Association, Vol. 92, No. 437, 1997, pp. 49-60. doi:10.1080/01621459.1997.10473602
[14]  M. K. Cowles and B. P. Carlin, “Markov Chain Monte Carlo Convergence Diagnostics: A Comparative Review,” Journal of the American Statistical Association, Vol. 91, No. 434, 1996, pp. 883-904. doi:10.1080/01621459.1996.10476956
[15]  J. M. Hammrsley and D. C. Hanscomb, “Monte Carlo Methods,” Methuen, London, 1964. doi:10.1007/978-94-009-5819-7
[16]  W. K. Hastings, “Monte Carlo Sampling Methods Using Markov Chains and Their Applications,” Biometrika, Vol. 57, No. 1, 1970, pp. 97-109. doi:10.1093/biomet/57.1.97
[17]  A. D. Sokal, “Monte Carlo Methods in Statistical Mechanics: Foundations and New Algorithms,” Cours de Troisieme Cycle da la Physique en Suisse Romande, Lausanne, 1989.
[18]  J. G. Propp and B. D. Wilson, “Exact Sampling with Coupled Markov Chains and Applications to Statistical Mechanics,” Random Structures and Algorithms, Vol. 9, No. 1-2, 1996, pp. 223-252. doi:10.1002/(SICI)1098-2418(199608/09)9:1/2<223::AID-RSA14>3.0.CO;2-O
[19]  D. Geman and G. Reynolds, “Constrained Restoration and the Recovery of Discontinuities,” IEEE Transactions on PAMI, Vol. 14, No. 3, 1992, pp. 367-383.
[20]  S. Geman and D. E. McClure, “Statistical Methods for Tomographic Image Reconstruction,” Bulletin of the International Statistical Institute, Vol. 52, No. 4, 1987, pp. 5-21.
[21]  R. G. Aykroyd and S. Zimeras, “Inhomogeneous Prior Models for Image Reconstruction,” Journal of American Statistical Association, Vol. 94, No. 447, 1999, pp. 934946. doi:10.1080/01621459.1999.10474198
[22]  D. Chandler, “Introduction to Modern Statistical Mechanics,” Oxford University Press, New York, 1978.
[23]  S. Zimeras, “Statistical Models in Medical Image Analysis,” Ph.D. Thesis, Department of Statistics, Leeds University, 1997.
[24]  I. S. Weir and P. J. Green, “Modeling Data from Single Photon Emission Computed Tomography,” Advances in Applied Statistics, Vol. 21, No. 1-2, 1994, pp. 313-338.
[25]  J. Besag, P. J. Green, D. Higson and K. Mengersen, “Bayesian Computation and Stochastic Systems,” Statistical Science, Vol. 10, No. 1, 1995, pp. 3-41.
[26]  J. Besag, “On the Statistical Analysis of Dirty Pictures,” Journal of the Royal Statistical Society, Series B, Vol. 48, No. 3, 1986, pp. 259-302.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

微信:OALib Journal