All Title Author
Keywords Abstract

Isotropic shear bond strength behavior of superficial bovine dentin: A pilot study

DOI: 10.4236/ojst.2013.31001, PP. 1-7

Keywords: Adhesion, Shear Bond Strength, Bovine Dentin, Isotropic Properties, Failure Mode

Full-Text   Cite this paper   Add to My Lib


The aim of this pilot study was to evaluate the shear bond strength of superficial bovine incisor dentin in different crown regions. Bonding was performed to the incisal, middle and cervical thirds of superficial bovine coronal dentin (n = 20) with a two-step etch-and-rinse adhesive (Optibond Solo Plus) and resin composite (Z100). Shear bond strength was evaluated at 24 h and failure modes of representative specimens wereobserved with FE-SEM. Non-parametric Kruskal-Wallis test with a significance level of 0.05 was used for data analysis. Mean shear bond strength values for the incisal, middle, and cervical thirds were 36.9 (3.1), 42.6 (2.6), and 37.1 (2.1) respectively with no significant differences evidenced between the crown thirds (p = 0.19). Observation of the failure mode of representative specimens demonstrated that specimens with high bond strength values exhibited predominantly mixed-type failures whereas low strength specimens exhibited adhesive failures between the dentin and adhesive. The absence of significant differences in shear bond strength between crown thirds indicate that, regardless of tubule orientation, any crown region can be used when superficial bovine incisor dentin is used for shear bond strength testing.


[1]  De Munck, J., Van Landuyt, K., Peumans, M., Poitevin, A., Lambrechts, P., Braem, M. and Van Meerbeek, B. (2005) A critical review of the durability of adhesion to tooth tissue: Methods and results. Journal of Dental Research, 84, 118-132. doi:10.1177/154405910508400204
[2]  Pashley, D.H. and Carvalho, R.M. (1997) Dentine permeability and dentine adhesion. Journal of Dentistry, 25, 355-372. doi:10.1016/S0300-5712(96)00057-7
[3]  Leloup, G., D’Hoore, W., Bouter, D., Degrange, M. and Vreven, J. (2001) Meta-analytical review of factors involved in dentin adherence. Journal of Dental Research, 80, 1605-1614. doi:10.1177/00220345010800070301
[4]  Watanabe, L.G., Marshall, J.G.W. and Marshall, S.J. (1996) Dentin shear strength: Effects of tubule orientation and intratooth location. Dental Materials, 12, 109-115. doi:10.1016/S0109-5641(96)80077-7
[5]  Marshall Jr., G.W., Marshall, S.J., Kinney, J.H. and Balooch, M. (1997) The dentin substrate: Structure and properties related to bonding. Journal of Dentistry, 25, 441-458. doi:10.1016/S0300-5712(96)00065-6
[6]  Burke, F.J., Hussain, A., Nolan, L. and Fleming, G.J. (2008) Methods used in dentine bonding tests: An analysis of 102 investigations on bond strength. European Journal of Prosthodontics and Restorative Dentistry, 16, 158-165.
[7]  Tagami, J., Tao, L., Pashley, D.H. and Horner, J.A. (1989) The permeability of dentine from bovine incisors in vitro. Archives of Oral Biology, 34, 773-777. doi:10.1016/0003-9969(89)90027-7
[8]  Reinhard, S., J?rg, A.L., Oskar, B. and Werner, G. (2000) Comparison of the number and diameter of dentinal tubules in human and bovine dentine by scanning electron microscopic investigation. Archives of Oral Biology, 45, 355-361. doi:10.1016/S0003-9969(00)00006-6
[9]  Nakamichi, I., Iwaku, M. and Fusayama, T. (1983) Bovine teeth as possible substitutes in the adhesion test. Journal of Dental Research, 62, 1076-1081. doi:10.1177/00220345830620101501
[10]  Reis, A.F., Giannini, M., Kavaguchi, A., Soares, C.J. and Line, S.R. (2004) Comparison of microtensile bond strength to enamel and dentin of human, bovine, and porcine teeth. Journal of Adhesive Dentistry, 6, 117-121.
[11]  Schilke, R., Lisson, J.A., Bauss, O. and Geurtsen, W. (2000) Comparison of the number and diameter of dentinal tubules in human and bovine dentine by scanning electron microscopic investigation. Archives of Oral Biology, 45, 355-361. doi:10.1016/S0003-9969(00)00006-6
[12]  Saunders, W.P. (1988) The shear impact retentive strengths of four dentine bonding agents to human and bovine dentine. Journal of Dentistry, 16, 233-238. doi:10.1016/0300-5712(88)90080-2
[13]  Reeves, G.W., Fitchie, J.G., Hembree Jr., J.H. and Puckett, A. D. (1995) Microleakage of new dentin bonding systems using human and bovine teeth. Operative Dentistry, 20, 230-235.
[14]  Inoue, T., Takahashi, H. and Nishimura, F. (2002) Anisotropy of tensile strengths of bovine dentin regarding dentinal tubule orientation and location. Dental Materials Journal, 21, 32-43. doi:10.4012/dmj.21.32
[15]  Kinney, J.H., Marshall, S.J. and Marshall, G.W. (2003) The mechanical properties of human dentin: A critical review and reevaluation of the dental literature. Critical Reviews in Oral Biology and Medicine, 14, 13-29.
[16]  Pashley, D., Okabe, A. and Parham, P. (1985) The relationship between dentin microhardness and tubule density. Endodontics and Dental Traumatology, 1, 176-179. doi:10.1111/j.1600-9657.1985.tb00653.x
[17]  Schüpbach, P., Krejci, I. and Lutz, F. (1997) Dentin bonding: Effect of tubule orientation on hybrid layer formation. European Journal of Oral Sciences, 105, 344-352. doi:10.1111/j.1600-0722.1997.tb00251.x
[18]  Phrukkanon, S., Burrow, M.F. and Tyas, M.J. (1999) The effect of dentine location and tubule orientation on the bond strengths between resin and dentine. Journal of Dentistry, 27, 265-274. doi:10.1016/S0300-5712(98)00060-8
[19]  Smith, D.C. and Cooper, W.E. (1971) The determination of shear strength. A method using a micro-punch apparatus. British Dental Journal, 130, 333-337. doi:10.1038/sj.bdj.4802665
[20]  Braga, R.R., Meira, J.B., Boaro, L.C. and Xavier, T.A. (2010) Adhesion to tooth structure: A critical review of “macro” test methods. Dental Materials, 26, e38-e49. doi:10.1016/
[21]  Kiyomura, M. (1987) Bonding strength to bovine dentin with 4-META/MMA-TBB resin long-term stability and influence of water. Journal of the Japanese Society for Dental Materials and Devices, 6, 860-872.
[22]  Cehreli, Z.C. and Akca, T. (2003) Effect of dentinal tubule orientation on the microtensile bond strength to primary dentin. Journal of Dentistry for Children, 70, 139-144.
[23]  Carvalho, R.M., Fernandes, C.A., Villanueva, R., Wang, L. and Pashley, D.H. (2001) Tensile strength of human dentin as a function of tubule orientation and density. Journal of Adhesive Dentistry, 3, 309-314.
[24]  Inoue, S., Pereira, P.N., Kawamoto, C., Nakajima, M., Koshiro, K., Tagami, J., Carvalho, R.M., Pashley, D.H. and Sano, H. (2003) Effect of depth and tubule direction on ultimate tensile strength of human coronal dentin. Dental Materials Journal, 22, 39-47. doi:10.4012/dmj.22.39
[25]  Lertchirakarn, V., Palamara, J.E. and Messer, H.H. (2001) Anisotropy of tensile strength of root dentin. Journal of Dental Research, 80, 453-456. doi:10.1177/00220345010800021001
[26]  Sogaard-Pedersen, B., Boye, H. and Matthiessen, M.E. (1990) Scanning electron microscope observations on collagen fibers in human dentin and pulp. Scandinavian Journal of Dental Research, 98, 89-95.
[27]  Nakabayashi, N., Nakamura, M. and Yasuda, N. (1991) Hybrid layer as a dentin-bonding mechanism. Journal of Esthetic and Restorative Dentistry, 3, 133-138. doi:10.1111/j.1708-8240.1991.tb00985.x
[28]  Van Noort, R., Noroozi, S., Howard, I.C. and Cardew, G. (1989) A critique of bond strength measurements. Journal of Dentistry, 17, 61-67. doi:10.1016/0300-5712(89)90131-0
[29]  DeHoff, P.H., Anusavice, K.J. and Wang, Z. (1995) Three-dimensional finite element analysis of the shear bond test. Dental Materials, 11, 126-131. doi:10.1016/0109-5641(95)80047-6
[30]  Yan, J., Clifton, K.B., Reep, R.L. and Mecholsky Jr., J.J. (2006) Application of fracture mechanics to failure in manatee rib bone. Journal of Biomechanical Engineering, 128, 281-289. doi:10.1115/1.2187044
[31]  Pashley, D.H., Sano, H., Ciucchi, B., Yoshiyama, M. and Carvalho, R.M. (1995) Adhesion testing of dentin bonding agents: A review. Dental Materials, 11, 117-125. doi:10.1016/0109-5641(95)80046-8
[32]  Al-Assaf, K., Chakmakchi, M., Palaghias, G., Karanika- Kouma, A. and Eliades, G. (2007) Interfacial characteristics of adhesive luting resins and composites with dentine. Dental Materials, 23, 829-839. doi:10.1016/
[33]  Loughran, G.M., Versluis, A. and Douglas, W.H. (2005) Evaluation of sub-critical fatigue crack propagation in a restorative composite. Dental Materials, 21, 252-261. doi:10.1016/


comments powered by Disqus