All Title Author
Keywords Abstract


2D+t Wavelet Domain Video Watermarking

DOI: 10.1155/2012/973418

Full-Text   Cite this paper   Add to My Lib

Abstract:

A novel watermarking framework for scalable coded video that improves the robustness against quality scalable compression is presented in this paper. Unlike the conventional spatial-domain (t?+?2D) water-marking scheme where the motion compensated temporal filtering (MCTF) is performed on the spatial frame-wise video data to decompose the video, the proposed framework applies the MCTF in the wavelet domain (2D?+?t) to generate the coefficients to embed the watermark. Robustness performances against scalable content adaptation, such as Motion JPEG 2000, MC-EZBC, or H.264-SVC, are reviewed for various combinations of motion compensated 2D?+?t?+?2D using the proposed framework. The MCTF is improved by modifying the update step to follow the motion trajectory in the hierarchical temporal decomposition by using direct motion vector fields in the update step and implied motion vectors in the prediction step. The results show smaller embedding distortion in terms of both peak signal to noise ratio and flickering metrics compared to frame-by-frame video watermarking while the robustness against scalable compression is improved by using 2D?+?t over the conventional t?+?2D domain video watermarking, particularly for blind watermarking schemes where the motion is estimated from the watermarked video. 1. Introduction Several attempts have been made to extend the image watermarking algorithms into video watermarking by using them either on frame-by-frame basis or on 3D decomposed video. The initial attempts on video watermarking were made by frame-by-frame embedding [1–4], due to its simplicity in implementation using image watermarking algorithms. Such watermarking algorithms consider embedding on selected frames located at fixed intervals to make them robust against frame dropping-based temporal adaptations of video. In this case, each frame is treated separately as an individual image; hence, any image-watermarking algorithm can be adopted to achieve the intended robustness. But frame-by-frame watermarking schemes often perform poorly in terms of flickering artefacts and robustness against various video processing attacks including temporal desynchronization, video collusion, video compression attacks, and so forth. In order to address some of these issues, the video temporal dimension is exploited using different transforms, such as discrete Fourier transform (DFT), discrete cosine transform (DCT), or discrete wavelet transform (DWT). These algorithms decompose the video by performing spatial 2D transform on individual frames followed by 1D transform in the

References

[1]  F. Hartung and B. Girod, “Watermarking of uncompressed and compressed video,” Signal Processing, vol. 66, no. 3, pp. 283–301, 1998.
[2]  H. Inoue, A. Miyazaki, T. Araki, and T. Katsura, “Digital watermark method using the wavelet transform for video data,” in Proceedings of the 1999 IEEE International Symposium on Circuits and Systems (ISCAS '99), vol. 4, pp. V-247–V-250, June 1999.
[3]  G. Do?rr and J. L. Dugelay, “A guide tour of video watermarking,” Signal Processing, vol. 18, no. 4, pp. 263–282, 2003.
[4]  M. P. Mitrea, T. B. Zaharia, F. J. Preteux, and A. Vlad, “Video watermarking based on spread spectrum and wavelet decomposition,” in Wavelet Applications in Industrial Processing II, vol. 5607 of Proceedings of the SPIE, pp. 156–164, 2004.
[5]  F. Deguillaume, G. Csurka, J. J. O'Ruanaidh, and T. Pun, “Robust 3D DFT video watermarking,” in Security and Watermarking of Multimedia Contents, vol. 3657 of Proceedings of the SPIE, pp. 113–124, 1999.
[6]  J. H. Lim, D. J. Kim, H. T. Kim, and C. S. Won, “Digital video watermarking using 3D-DCT and intracubic correlation,” in Security and Watermarking of Multimedia Contents III, vol. 4314 of Proceedings of the SPIE, pp. 64–72, 2001.
[7]  S. J. Kim, S. H. Lee, K. S. Moon et al., “A new digital video watermarking using the dual watermark images and 3D DWT,” in Proceedings of the IEEE Region Conference (TENCON '04), vol. 1, pp. 291–294, 2004.
[8]  P. Campisi and A. Neri, “Video watermarking in the 3D-DWT domain using perceptual masking,” in IEEE International Conference on Image Processing (ICIP '05), pp. 997–1000, September 2005.
[9]  S. J. Choi and J. W. Woods, “Motion-compensated 3-D subband coding of video,” IEEE Transactions on Image Processing, vol. 8, no. 2, pp. 155–167, 1999.
[10]  S. T. Hsiang and J. W. Woods, “Embedded video coding using invertible motion compensated 3-D subband/wavelet filter bank,” Signal Processing, vol. 16, no. 8, pp. 705–724, 2001.
[11]  C. I. Podilchuk, N. S. Jayant, and N. Farvardin, “Three-dimensional subband coding of video,” IEEE Transactions on Image Processing, vol. 4, no. 2, pp. 125–139, 1995.
[12]  P. Vinod and P. K. Bora, “Motion-compensated inter-frame collusion attack on video watermarking and a countermeasure,” IEE Proceedings on Information Security, vol. 153, no. 2, pp. 61–73, 2006.
[13]  P. Vinod, G. Do?rr, and P. K. Bora, “Assessing motion-coherency in video watermarking,” in Proceedings of the Multimedia and Security Workshop, pp. 114–119, September 2006.
[14]  P. Meerwald and A. Uhl, “Blind motion-compensated video watermarking,” in Proceedings of the IEEE International Conference on Multimedia and Expo (ICME '08), pp. 357–360, June 2008.
[15]  Y. Andreopoulos, A. Munteanu, J. Barbarien, M. Van Der Schaar, J. Cornelis, and P. Schelkens, “In-band motion compensated temporal filtering,” Signal Processing, vol. 19, no. 7, pp. 653–673, 2004.
[16]  F. Huo and X. Gao, “AWavelet based image watermarking scheme,” in Proceedings of the IEEE International Conference on Image Processing, pp. 2573–2576, Atlanta, Ga, USA, 2006.
[17]  C. Jin and J. Peng, “A robust wavelet-based blind digital watermarking algorithm,” Information Technology Journal, vol. 5, no. 2, pp. 358–363, 2006.
[18]  M. A. Suhail, M. S. Obaidat, S. S. Ipson, and B. Sadoun, “A comparative study of digital watermarking in JPEG and JPEG 2000 environments,” Information Sciences, vol. 151, pp. 93–105, 2003.
[19]  M. Barni, F. Bartolini, and A. Piva, “Improved wavelet-based watermarking through pixel-wise masking,” IEEE Transactions on Image Processing, vol. 10, no. 5, pp. 783–791, 2001.
[20]  L. Xie and G. R. Arce, “Joint wavelet compression and authentication watermarking,” in Proceedings of the International Conference on Image Processing (ICIP '98), vol. 2, pp. 427–431, October 1998.
[21]  D. Kundur and D. Hatzinakos, “Digital watermarking using multiresolution wavelet decomposition,” in Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP '98), vol. 5, pp. 2969–2972, May 1998.
[22]  J. R. Kim and Y. S. Moon, “Robust wavelet-based digital watermarking using level-adaptive thresholding,” in International Conference on Image Processing (ICIP '99), pp. 226–230, October 1999.
[23]  D. Bhowmik and C. Abhayaratne, “A framework for evaluating wavelet based watermarking for scalable coded digital item adaptation attacks,” in Wavelet Applications in Industrial Processing VI, vol. 7248 of Proceedings of the SPIE, San Jose, Calif, USA, January 2009.
[24]  P. Meerwald, “Quantization watermarking in the JPEG2000 coding pipeline,” in Proceedings of the 5th International Working Conference on Communication and Multimedia Security, pp. 69–79, 2001.
[25]  X. Fan, W. Gao, Y. Lu, and D. Zhao, “Flicking reduction in all intra frame coding,” Tech. Rep. JVT-E070, 2002.
[26]  MSU Graphics & Media Lab VG, MSU Quality Measurement Tool, http://www.compression.ru/video/.

Full-Text

comments powered by Disqus