All Title Author
Keywords Abstract

On the Exact Solution of a Generalized Polya Process

DOI: 10.1155/2010/504267

Full-Text   Cite this paper   Add to My Lib


There are two types of master equations in describing nonequilibrium phenomena with memory effect: (i) the memory function type and (ii) the nonstationary type. A generalized Polya process is studied within the framework of a non-stationary type master equation approach. For a transition-rate with an arbitrary time-dependent relaxation function, the exact solution of a generalized Polya process is obtained. The characteristic features of temporal variation of the solution are displayed for some typical time-dependent relaxation functions reflecting memory in the systems. 1. Introduction The generalized master equation of memory function type [1] is a useful basis for analyzing non-equilibrium phenomena in open systems as where the kernel is conventionally assumed to have the product of a memory function with a transition rate as . The transition rate has the constraint with . This generalized master equation approach corresponds to the generalized Langevin equation of the memory function type [2, 3]. One can see many successful applications with long memory along the line of traditional formulation [1]. Looking around recent studies in complex open systems, there is an alternative approach based on a generalized non-stationary master equation [4] as The master equation in this form corresponds to the generalized Langevin equation of the convolutionless type, which is derived with the aid of projection operator method by Tokuyama and Mori [5]. The time-dependent coefficient may be written in the following form: . It is expected from the projection operator method [5] that the time-dependent function reflects the memory effect from varying environment in a different way associated with the memory function (cf. also H?nggi and Talkner [6]). The memory function (MF) formalism has been utilized in anomalous diffusion like Lévy type diffusion in atmospheric pollution, diffusion impurities in amorphous materials, and so on. The alternative convolution-less, non-stationary (NS) formalism gives only a small number of applications. The paper intends to exhibit a potential ability of the NS formalism by taking an arbitrary time-dependent function which is representing memory effect. The paper is organized as follows. Section 2 reviews the non-stationary Poisson process. Section 3 shows a generalized Polya process wherein it is involved a generalized non-stationary transition rate with an arbitrary function of time. The exact solution and the expression mean and variance are displayed as a function of . Some important remarks are given for a generalized


[1]  “On the wonderful world of random walks,” in Nonequilibrium Phenomena II: From Stochastic to Hydrodynamics, E. W. Montroll and M. F. Shlesinger, Eds.J. L. Lebowitz and E. W. Montroll, Eds., chapter 1, pp. 1–121, North-Holland, Amsterdam, The Netherlands, 1984.
[2]  R. Kubo, “The fluctuation-dissipation theorem,” Reports on Progress in Physics, vol. 29, no. 1, pp. 255–284, 1966.
[3]  H. Mori, “A continued-fraction representation of the time-correlation functions,” Progress of Theoretical Physics, vol. 34, pp. 399–416, 1965.
[4]  R. Kubo, “Stochastic Liouville equations,” Journal of Mathematical Physics, vol. 4, pp. 174–183, 1963.
[5]  M. Tokuyama and H. Mori, “Statistical-mechanical theory of random frequency modulations and generalized Brownian motions,” Progress of Theoretical Physics, vol. 55, no. 2, pp. 411–429, 1976.
[6]  P. H?nggi and P. Talkner, “On the equivalence of time-convolutionless master equations and generalized Langevin equations,” Physics Letters A, vol. 68, no. 1, pp. 9–11, 1978.
[7]  Y. Ogata, “Statistical models for earthquake occurrences and residual analysis for point processes,” Journal of the American Statistical Association, vol. 83, pp. 9–27, 1988.
[8]  R. L. Smith, “Statistics of extremes, with applications in environment, insurance and finance, in extremevalue in finance,” in Telecommunications and the Environment, B. Finkenstadt and H. Rootzen, Eds., Chapman & Hall/CRC, London, UK, 2003.
[9]  T. Bedford and R. Cooke, Probabilistic Risk Analysis, Cambridge University Press, New York, NY, USA, 2001.
[10]  W. Feller, Introduction to Probability Theory and Its Applications, vol. 1&2, John Wiley & Sons, New York, NY, USA, 1967.
[11]  H. Konno, “The stochastic process of non-linear random vibration. Reactor-noise analysis of hump phenomena in a time domain,” Annals of Nuclear Energy, vol. 13, no. 4, pp. 185–201, 1986.
[12]  D. Regan, Human Brain Electrophysiology, Elsevier, New York, NY, USA, 1989.
[13]  K. H. W. J. ten Tusscher and A. V. Panfilov, “Alternans and spiral breakup in a human ventricular tissue model,” American Journal of Physiology, vol. 291, no. 3, pp. H1088–H1100, 2006.
[14]  O. Diekmann and J. A. P. Heesterbeek, Mathematical Epidemiology of Infectious Diseases, Wiley Series in Mathematical and Computational Biology, John Wiley & Sons, Chichester, UK, 2000.
[15]  S. B. Lowen and M. C. Teich, “The periodogram and Allan variance reveal fractal exponents greater than unity in auditory-nerve spike trains,” Journal of the Acoustical Society of America, vol. 99, no. 6, pp. 3585–3591, 1996.
[16]  G. Buzsáki, Rhythms of the Brain, Oxford University Press, Oxford, UK, 2006.


comments powered by Disqus