All Title Author
Keywords Abstract

Numerical Analysis of Oscillation Death in Coupled Self-Excited Elastic Beams

DOI: 10.1155/2012/746537

Full-Text   Cite this paper   Add to My Lib


The emergence of the oscillation death phenomenon in a ring of four coupled self-excited elastic beams is numerically explored in this work. The beams are mathematically represented through partial differential equations which are solved by means of the finite differences method. A coupling scheme based on shared boundary conditions at the roots of the beams is assumed, and as initial conditions, zero velocity of the first beam and three normal vibration modes of a linear elastic beam are employed. The influence of the self-exciting constant on the ring dynamics is analyzed. It is observed that oscillation death arises as result of the singularity of the coupling matrix. 1. Introduction In the past years the collective behavior of coupled nonlinear oscillators has been widely studied in many disciplines, for example, physics [1], biology [2], ecology [3], chemistry [4], and mechanics [5]. A wide diversity of nonlinear dynamic phenomena such as locking [1], partial synchronization [6], full synchronization [7], antiphase synchronization [8], and clustering [9] have been reported in coupled oscillators. Many coupling schemes have also been tested: local [10], nearest [11], global [12], diffusive [13], adaptive [14], delayed [15], hierarchical [16], and so on. An interesting behavior of coupled oscillators is amplitude death and oscillation death, which are steady states where the coupled oscillators stop their oscillation in a permanent way and become frozen in time [17–19]. Sometimes this cessation of oscillations in time is named quenching [20]. Amplitude death arises through a Hopf bifurcation mechanism in coupled oscillators with an important parameter mismatch or in identical oscillators with time delays [21]. An already existing unstable steady state with zero amplitude is transformed by the coupling into a stable one allowing its observation; that is, the coupling induces stability at the origin of the phase space. On the other hand, oscillation death occurs through a saddle-node bifurcation mechanism allowing the emergence of new fixed points: a new stable steady state with nonzero amplitude is created by the coupling [19, 21]. Frequently, in the literature amplitude death is confused with oscillation death [22–27]. Even the famous finding of Lord Rayleigh [28] related to the quenching of two organ pipes standing side by side is indistinctly considered as amplitude death or oscillation death [29]. To date, in spite of the significant conceptual and technical differences between amplitude death and oscillation death, there is not yet a clear


[1]  H. Erzgr?ber and S. Wieczorek, “Locking behavior of three coupled laser oscillators,” Physical Review E, vol. 80, no. 2, Article ID 026212, 6 pages, 2009.
[2]  R. E. Mirollo and S. H. Strogatz, “Synchronization of pulse-coupled biological oscillators,” SIAM Journal on Applied Mathematics, vol. 50, no. 6, pp. 1645–1662, 1990.
[3]  B. Blasius, A. Huppert, and L. Stone, “Complex dynamics and phase synchronization in spatially extended ecological systems,” Nature, vol. 399, no. 6734, pp. 354–359, 1999.
[4]  K. Fujii, D. Hayashi, O. Inomoto, and S. Kai, “Noise-induced entrainment between two coupled chemical oscillators in Belouzov-Zhabotinsky reactions,” Forma, vol. 15, no. 2, pp. 219–225, 2000.
[5]  P. Perlikowski, A. Stefański, and T. Kapitaniak, “1:1 Mode locking and generalized synchronization in mechanical oscillators,” Journal of Sound and Vibration, vol. 318, no. 1-2, pp. 329–340, 2008.
[6]  I. A. Heisler, T. Braun, Y. Zhang, G. Hu, and H. A. Cerdeira, “Experimental investigation of partial synchronization in coupled chaotic oscillators,” Chaos, vol. 13, no. 1, pp. 185–194, 2003.
[7]  R. Carareto, F. M. Orsatti, and J. R. C. Piqueira, “Optimized network structure for full-synchronization,” Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 6, pp. 2536–2541, 2009.
[8]  M. A. Barrón and M. Sen, “Synchronization of four coupled van der Pol oscillators,” Nonlinear Dynamics, vol. 56, no. 4, pp. 357–367, 2009.
[9]  K. Czolczynski, P. Perlikowski, A. Stefanski, and T. Kapitaniak, “Clustering and synchronization of n Huygens' clocks,” Physica A, vol. 388, no. 24, pp. 5013–5023, 2009.
[10]  H. Hong, H. Park, and M. Y. Choi, “Collective phase synchronization in locally coupled limit-cycle oscillators,” Physical Review E, vol. 70, no. 4, Article ID 045204, 4 pages, 2004.
[11]  H. F. El-Nashar, P. Muruganandam, F. F. Ferreira, and H. A. Cerdeira, “Transition to complete synchronization in phase-coupled oscillators with nearest neighbor coupling,” Chaos, vol. 19, no. 1, Article ID 013103, 5 pages, 2009.
[12]  M. Ataka and T. Ohta, “Anomalous synchronization of integrate-and-fire oscillators with global coupling,” Progress of Theoretical Physics, supplement 161, pp. 156–160, 2006.
[13]  E. H. Park, Z. Feng, and D. M. Durand, “Diffusive coupling and network periodicity: a computational study,” Biophysical Journal, vol. 95, no. 3, pp. 1126–1137, 2008.
[14]  F. Sorrentino, “Adaptive coupling for achieving stable synchronization of chaos,” Physical Review E, vol. 80, no. 5, Article ID 056206, 6 pages, 2009.
[15]  W. He and J. Cao, “Exponential synchronization of hybrid coupled networks with delayed coupling,” IEEE Transactions on Neural Networks, vol. 21, no. 4, pp. 571–583, 2010.
[16]  E. D. Lumer and B. A. Huberman, “Hierarchical dynamics in large assemblies of interacting oscillators,” Physics Letters A, vol. 160, no. 3, pp. 227–232, 1991.
[17]  K. Bar-Eli, “On the stability of coupled chemical oscillators,” Physica D, vol. 14, no. 2, pp. 242–252, 1985.
[18]  D. G. Aronson, G. B. Ermentrout, and N. Kopell, “Amplitude response of coupled oscillators,” Physica D, vol. 41, no. 3, pp. 403–449, 1990.
[19]  W. Zou, X. G. Wang, Q. Zhao, and M. Zhan, “Oscillation death in coupled oscillators,” Frontiers of Physics in China, vol. 4, no. 1, pp. 97–110, 2009.
[20]  Y. P. Singh, “Quenching in a system of coupled van der Pol oscillators,” Journal of Sound and Vibration, vol. 73, no. 1, pp. 73–78, 1980.
[21]  J. J. Suarez-Vargas, J. A. González, A. Stefanovska, and P. V. E. McClintock, “Diverse routes to oscillation death in a coupled-oscillator system,” Europhysics Letters, vol. 85, no. 3, Article ID 38008, 2009.
[22]  L. L. Rubchinsky, M. M. Sushchik, and G. V. Osipov, “Patterns in networks of oscillators formed via synchronization and oscillator death,” Mathematics and Computers in Simulation, vol. 58, no. 4–6, pp. 443–467, 2002.
[23]  A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization a Universal Concept in Nonlinear Sciences, Cambridge University Press, Cambridge, Mass, USA, 2003.
[24]  Z. Hou and H. Xin, “Oscillator death on small-world networks,” Physical Review E, vol. 68, no. 5, Article ID 055103, 4 pages, 2003.
[25]  L. Basnarkov and V. Urumov, “Critical exponents of the transition from incoherence to partial oscillation death in the Winfree model,” Journal of Statistical Mechanics, vol. 2009, no. 10, Article ID P10014, 2009.
[26]  A. P. Kuznetsov and J.P. Roman, “Synchronization of coupled anisochronous auto-oscillating systems,” Nonlinear Phenomena in Complex Systems, vol. 12, no. 1, pp. 54–60, 2009.
[27]  A. Koseska, E. Volkov, A. Zaikin, and J. Kurths, “Inherent multistability in arrays of autoinducer coupled genetic oscillators,” Physical Review E, vol. 75, no. 3, Article ID 031916, 8 pages, 2007.
[28]  J. W. S. Rayleigh, The Theory of Sound, Dover Publications, New York, NY, USA, 1945.
[29]  D. S. Lee, J. W. Ryu, Y. J. Park, W. H. Kye, M. S. Kurdoglyan, and C. M. Kim, “Stabilization of a chaotic laser and quenching,” Applied Physics Letters, vol. 86, no. 18, Article ID 181104, pp. 1–3, 2005.
[30]  E. Ullner, A. Zaikin, E. I. Volkov, and J. García-Ojalvo, “Multistability and clustering in a population of synthetic genetic oscillators via phase-repulsive cell-to-cell communication,” Physical Review Letters, vol. 99, no. 14, Article ID 148103, 4 pages, 2007.
[31]  J. W. Ryu, D. S. Lee, Y. J. Park, and C. M. Kim, “Oscillation quenching in coupled different oscillators,” Journal of the Korean Physical Society, vol. 55, no. 2, pp. 395–399, 2009.
[32]  C. Y. Cheng, “Induction of Hopf bifurcation and oscillation death by delays in coupled networks,” Physics Letters A, vol. 374, no. 2, pp. 178–185, 2009.
[33]  L. Junge and U. Parlitz, “Control and synchronization of spatially extended systems,” in Proceedings of the International Symposium on Nonlinear Theory and its Applications (NOLTA '98), Crans-Montana, 1998.
[34]  L. Junge and U. Parlitz, “Synchronization and control of coupled Ginzburg-Landau equations using local coupling,” Physical Review E, vol. 61, no. 4, pp. 3736–3742, 2000.
[35]  G. W. Wei, “Synchronization of single-side locally averaged adaptive coupling and its application to shock capturing,” Physical Review Letters, vol. 86, no. 16, pp. 3542–3545, 2001.
[36]  J. Bragard, E. Montbrió, C. Mendoza, S. Boccaletti, and B. Blasius, “Defect-enhanced anomaly in frequency synchronization of asymmetrically coupled spatially extended systems,” Physical Review E, vol. 71, no. 2, Article ID 025201, 4 pages, 2005.
[37]  S. Jie, E. M. Bollt, and T. Nishikawa, “Constructing generalized synchronization manifolds by manifold equation,” SIAM Journal on Applied Dynamical Systems, vol. 8, no. 1, pp. 202–221, 2009.
[38]  M. A. Barron and M. Sen, “Synchronization of coupled self-excited elastic beams,” Journal of Sound and Vibration, vol. 324, no. 1-2, pp. 209–220, 2009.
[39]  K. L. Graff, Wave Motion in Elastic Solids, Ohio State University Press, Belfast, Ireland, 1975.
[40]  B. van der Pol and J. van der Mark, “The heartbeat considered as a relaxation oscillation, and an electrical model of the heart,” Philosophical Magazine, vol. 6, pp. 763–775, 1928.
[41]  R. E. D. Bishop and A. Y. Hassan, “The lift and drag forces on a circular cylinder in a flowing fluid,” Proceedings of the Royal Society Series, vol. A277, pp. 32–50, 1963.
[42]  Y. S. Lee, A. F. Vakakis, L. A. Bergman, and D. M. McFarland, “Suppression of limit cycle oscillations in the van der Pol oscillator by means of passive non-linear energy sinks,” Structural Control and Health Monitoring, vol. 13, no. 1, pp. 41–75, 2006.
[43]  R. T. Hartlen and I. G. Currie, “Lift-oscillator model of vortex induced vibration,” Journal of the Engineering Mechanics, vol. 96, pp. 577–591, 1970.
[44]  M. A. Barron-Meza, “Vibration analysis of a self-excited elastic beam,” Journal of Applied Research and Technology, vol. 8, no. 2, pp. 227–239, 2010.
[45]  M. Lou, Q. Duan, and G. Chen, “Modal perturbation method for the dynamic characteristics of Timoshenko beams,” Shock and Vibration, vol. 12, no. 6, pp. 425–434, 2005.
[46]  W. T. Thomson, Theory of Vibration with Applications, Prentice Hall, Englewood Cliffs, NJ, USA, 1981.
[47]  S. Heath and M. Imregun, “A survey of blade tip-timing measurement techniques for turbomachinery vibration,” Journal of Engineering for Gas Turbines and Power, vol. 120, no. 4, pp. 784–790, 1998.


comments powered by Disqus